Haitao Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2303162/publications.pdf

Version: 2024-02-01

471509 501196 33 798 17 28 citations h-index g-index papers 34 34 34 1231 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Polyphenylene Sulfideâ€Based Solidâ€State Separator for Limited Li Metal Battery. Small, 2021, 17, e2104365.	10.0	12
2	Dense integration of graphene paper positive electrode materials for aluminum-ion battery. Ionics, 2020, 26, 245-254.	2.4	11
3	High Peel Strength and Flexible Aligned Carbon Nanotubes/Etched Al Foil Composites with Boosted Supercapacitor and Thermal Dissipation Performances. Industrial & Engineering Chemistry Research, 2020, 59, 1549-1558.	3.7	3
4	Boosting gravimetric and volumetric energy density of supercapacitors by 3D pomegranate-like porous carbon structure design. Applied Surface Science, 2020, 534, 147613.	6.1	23
5	Dense integration of solvent-free electrodes for Li-ion supercabattery with boosted low temperature performance. Journal of Power Sources, 2020, 473, 228553.	7.8	22
6	Polypyrrole derived porous carbon for high-performance Li ion capactiors. Vacuum, 2020, 177, 109360.	3.5	11
7	Thermal dynamic study of the gradual desolvation in submicropores for carbon-based supercapacitor at low temperature. Ionics, 2020, 26, 4695-4704.	2.4	3
8	Boosting Specific Energy and Power of Carbon-Ionic Liquid Supercapacitors by Engineering Carbon Pore Structures. Frontiers in Chemistry, 2020, 8, 6.	3.6	5
9	Boosting rate capability of ionic liquid supercapacitors by copolymer-derived activated hollow carbon nanospheres. Materials Express, 2020, 10, 1925-1931.	0.5	2
10	Boosting Electrochemical Performances of High-Voltage NCA/LTO Cells by Cathode Electrolyte Interface Nano Film Formation in Ionic Liquid Electrolyte. Nanoscience and Nanotechnology Letters, 2020, 12, 467-475.	0.4	1
11	Great Enhancement of Carbon Energy Storage through Narrow Pores and Hydrogen-Containing Functional Groups for Aqueous Zn-Ion Hybrid Supercapacitor. Molecules, 2019, 24, 2589.	3.8	38
12	Boosting the electrochemical performance through proton transfer for the Zn-ion hybrid supercapacitor with both ionic liquid and organic electrolytes. Journal of Materials Chemistry A, 2019, 7, 9708-9715.	10.3	111
13	Facile synthesis of carbon with nanopore-network precisely controlled by zinc ions at the molecular level for Boosting the performance of supercapacitors. Carbon, 2019, 147, 157-163.	10.3	5
14	Defect-free soft carbon as cathode material for Al-ion batteries. lonics, 2019, 25, 1235-1242.	2.4	23
15	Carbon Nanosponge Cathode Materials and Graphite-Protected Etched Al Foil Anode for Dual-Ion Hybrid Supercapacitor. Journal of the Electrochemical Society, 2018, 165, A3100-A3107.	2.9	14
16	Preparation and Optimization of New High-Power Nanoscale Li4Ti5O12 Full-Cell System. Journal of Nanoscience and Nanotechnology, 2018, 18, 8232-8239.	0.9	10
17	One-step preparation of nitrogen-doped graphene nanosheets for high-performance supercapacitors. Applied Surface Science, 2017, 409, 350-357.	6.1	19
18	Porous carbon with small mesoporesas an ultra-high capacity adsorption medium. Applied Surface Science, 2017, 420, 535-541.	6.1	11

#	Article	IF	CITATIONS
19	Hierarchically porous carbons derived from polyaniline by "nanotube seeding―for high-performance ionic liquid-based supercapacitors. Journal of Materials Chemistry A, 2017, 5, 524-528.	10.3	28
20	Boosting the Energy Density of 3D Dual-Manganese Oxides-Based Li-Ion Supercabattery by Controlled Mass Ratio and Charge Injection. Journal of the Electrochemical Society, 2016, 163, A2618-A2622.	2.9	10
21	Boosted Supercapacitive Energy with High Rate Capability of aCarbon Framework with Hierarchical Pore Structure in an Ionic Liquid. ChemSusChem, 2016, 9, 3093-3101.	6.8	33
22	Geometrically confined favourable ion packing for high gravimetric capacitance in carbon–ionic liquid supercapacitors. Energy and Environmental Science, 2016, 9, 232-239.	30.8	109
23	Liâ∈Metalâ∈Free Prelithiation of Siâ∈Based Negative Electrodes for Full Liâ∈Ion Batteries. ChemSusChem, 2015, 8, 2737-2744.	6.8	63
24	Boosting Properties of 3D Binderâ€Free Manganese Oxide Anodes by Preformation of a Solid Electrolyte Interphase. ChemSusChem, 2015, 8, 1368-1380.	6.8	7
25	Coaxial Carbon/Metal Oxide/Aligned Carbon Nanotube Arrays as High-Performance Anodes for Lithium Ion Batteries. ChemSusChem, 2014, 7, 1201-1201.	6.8	O
26	Coaxial Carbon/Metal Oxide/Aligned Carbon Nanotube Arrays as Highâ€Performance Anodes for Lithium Ion Batteries. ChemSusChem, 2014, 7, 1335-1346.	6.8	29
27	In situ X-ray diffraction and electrochemical impedance spectroscopy of a nanoporous Li2FeSiO4/C cathode during the initial charge/discharge cycle of a Li-ion battery. Journal of Power Sources, 2013, 238, 478-484.	7.8	34
28	3D aligned-carbon-nanotubes@Li2FeSiO4 arrays as high rate capability cathodes for Li-ion batteries. Nanotechnology, 2013, 24, 435703.	2.6	12
29	Synthesis of carbon nanofibers@MnO2 3D structures over copper foil as binder free anodes for lithium ion batteries. Journal of Energy Chemistry, 2013, 22, 78-86.	12.9	22
30	High capacity Li[Ni0.8Co0.1Mn0.1]O2 synthesized by sol–gel and co-precipitation methods as cathode materials for lithium-ion batteries. Solid State Ionics, 2013, 249-250, 105-111.	2.7	29
31	High capacity nanostructured Li2FexSiO4/C with Fe hyperstoichiometry for Li-ion batteries. Journal of Power Sources, 2013, 235, 234-242.	7.8	30
32	Facile synthesis of manganese oxide/aligned carbon nanotubes over aluminium foil as 3D binder free cathodes for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 3757.	10.3	43
33	PVA-assisted combustion synthesis and characterization of porous nanocomposite Li2FeSiO4/C. Solid State Ionics, 2012, 225, 585-589.	2.7	25