Jianchun Bian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2303154/publications.pdf

Version: 2024-02-01

		394421	377865
52	1,302 citations	19	34
papers	citations	h-index	g-index
59	59	59	1227
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Comprehensive Pattern of Deep Convective Systems over the Tibetan Plateau–South Asian Monsoon Region Based on TRMM Data. Journal of Climate, 2014, 27, 6612-6626.	3.2	116
2	Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6972-6977.	7.1	106
3	Transport of chemical tracers from the boundary layer to stratosphere associated with the dynamics of the Asian summer monsoon. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,159.	3.3	101
4	In situ water vapor and ozone measurements in Lhasa and Kunming during the Asian summer monsoon. Geophysical Research Letters, 2012, 39, .	4.0	81
5	Intercomparison of humidity and temperature sensors: GTS1, Vaisala RS80, and CFH. Advances in Atmospheric Sciences, 2011, 28, 139-146.	4.3	69
6	Transport of Asian surface pollutants to the global stratosphere from the Tibetan Plateau region during the Asian summer monsoon. National Science Review, 2020, 7, 516-533.	9.5	63
7	Validation of satellite ozone profile retrievals using Beijing ozonesonde data. Journal of Geophysical Research, 2007, 112, .	3.3	54
8	Vertical Air Motion from T-REX Radiosonde and Dropsonde Data. Journal of Atmospheric and Oceanic Technology, 2009, 26, 928-942.	1.3	51
9	Summertime nitrate aerosol in the upper troposphere and lower stratosphere over the Tibetan Plateau and the South Asian summer monsoon region. Atmospheric Chemistry and Physics, 2016, 16, 6641-6663.	4.9	46
10	Formation of the summertime ozone valley over the Tibetan Plateau: The Asian summer monsoon and air column variations. Advances in Atmospheric Sciences, 2011, 28, 1318-1325.	4.3	43
11	A deep stratospheric intrusion associated with an intense cut-off low event over East Asia. Science China Earth Sciences, 2015, 58, 116-128.	5.2	36
12	Dehydration and low ozone in the tropopause layer over the Asian monsoon caused by tropical cyclones: Lagrangian transport calculations using ERA-Interim and ERA5 reanalysis data. Atmospheric Chemistry and Physics, 2020, 20, 4133-4152.	4.9	35
13	Ozone mini-hole occurring over the Tibetan Plateau in December 2003. Science Bulletin, 2006, 51, 885-888.	9.0	32
14	Identification of the tropical tropopause transition layer using the ozone-water vapor relationship. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3586-3599.	3.3	31
15	High tropospheric ozone in Lhasa within the Asian summer monsoon anticyclone in 2013: influence of convective transport and stratospheric intrusions. Atmospheric Chemistry and Physics, 2018, 18, 17979-17994.	4.9	30
16	The prediction of non-stationary climate series based on empirical mode decomposition. Advances in Atmospheric Sciences, 2010, 27, 845-854.	4.3	25
17	Large Amounts of Water Vapor Were Injected into the Stratosphere by the Hunga Tonga–Hunga Ha'apai Volcano Eruption. Atmosphere, 2022, 13, 912.	2.3	25
18	Impact of typhoons on the composition of the upper troposphere within the Asian summer monsoon anticyclone: the SWOP campaign in Lhasa 2013. Atmospheric Chemistry and Physics, 2017, 17, 4657-4672.	4.9	24

#	Article	IF	Citations
19	Religious burning as a potential major source of atmospheric fine aerosols in summertime Lhasa on the Tibetan Plateau. Atmospheric Environment, 2018, 181, 186-191.	4.1	24
20	Tracing the boundary layer sources of carbon monoxide in the Asian summer monsoon anticyclone using WRF-Chem. Advances in Atmospheric Sciences, 2015, 32, 943-951.	4.3	23
21	Parameterizations of Entrainmentâ€Mixing Mechanisms and Their Effects on Cloud Droplet Spectral Width Based on Numerical Simulations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032972.	3.3	18
22	Long-term ozone variability in the vertical structure and integrated column over the North China Plain: results based on ozonesonde and Dobson measurements during 2001–2019. Environmental Research Letters, 2021, 16, 074053.	5.2	18
23	Observation of a summer tropopause fold by ozonesonde at Changchun, China: Comparison with reanalysis and model simulation. Advances in Atmospheric Sciences, 2015, 32, 1354-1364.	4.3	17
24	Dynamic formation of extreme ozone minimum events over the Tibetan Plateau during northern winters 1987–2001. Journal of Geophysical Research, 2010, 115, .	3.3	16
25	Deep stratospheric intrusion and Russian wildfire induce enhanced tropospheric ozone pollution over the northern Tibetan Plateau. Atmospheric Research, 2021, 259, 105662.	4.1	16
26	Features of ozone mini-hole events over the Tibetan Plateau. Advances in Atmospheric Sciences, 2009, 26, 305-311.	4.3	15
27	El Ni $ ilde{A}\pm$ o Southern Oscillation influence on the Asian summer monsoon anticyclone. Atmospheric Chemistry and Physics, 2018, 18, 8079-8096.	4.9	15
28	Statistics of gravity waves in the lower stratosphere over Beijing based on high vertical resolution radiosonde. Science in China Series D: Earth Sciences, 2005, 48, 1548-1558.	0.9	13
29	Stratospheric entry point for upper-tropospheric air within the Asian summer monsoon anticyclone. Science China Earth Sciences, 2017, 60, 1685-1693.	5.2	13
30	Significant Contribution of Stratospheric Water Vapor to the Poleward Expansion of the Hadley Circulation in Autumn Under Greenhouse Warming. Geophysical Research Letters, 2021, 48, e2021GL094008.	4.0	12
31	The impact of cut-off lows on ozone in the upper troposphere and lower stratosphere over Changchun from ozonesonde observations. Advances in Atmospheric Sciences, 2016, 33, 135-150.	4.3	11
32	In situ measurements and backward-trajectory analysis of high-concentration, fine-mode aerosols in the UTLS over the Tibetan Plateau. Environmental Research Letters, 2019, 14, 124068.	5.2	11
33	Verification of satellite ozone/temperature profile products and ozone effective height/temperature over Kunming, China. Science of the Total Environment, 2019, 661, 35-47.	8.0	10
34	Aerosol variations in the upper troposphere and lower stratosphere over the Tibetan Plateau. Environmental Research Letters, 2020, 15, 094068.	5.2	10
35	Significant contribution of lightning NO to summertime surface O3 on the Tibetan Plateau. Science of the Total Environment, 2022, 829, 154639.	8.0	10
36	Development of cloud detection methods using CFH, GTS1, and RS80 radiosondes. Advances in Atmospheric Sciences, 2012, 29, 236-248.	4.3	9

#	Article	IF	Citations
37	Tropical Cyclones Reduce Ozone in the Tropopause Region Over the Western Pacific: An Analysis of 18AYears Ozonesonde Profiles. Earth's Future, 2021, 9, e2020EF001635.	6.3	9
38	Statistics of the tropopause inversion layer over Beijing. Advances in Atmospheric Sciences, 2008, 25, 381-386.	4.3	7
39	A novel approach in predicting non-stationary time series by combining external forces. Science Bulletin, 2011, 56, 3053.	1.7	7
40	Statistics of gravity wave spectra in the troposphere and lower stratosphere over Beijing. Science China Earth Sciences, 2010, 53, 141-149.	5.2	6
41	Workshop on dynamics, transport and chemistry of the UTLS Asian Monsoon. Advances in Atmospheric Sciences, 2016, 33, 1096-1098.	4.3	6
42	Statistical analysis of inertial gravity wave parameters in the lower stratosphere over Northern China. Climate Dynamics, 2019, 52, 563-575.	3.8	6
43	Mixing characteristics within the tropopause transition layer over the Asian summer monsoon region based on ozone and water vapor sounding data. Atmospheric Research, 2022, 271, 106093.	4.1	6
44	Inertial gravity wave parameters for the lower stratosphere from radiosonde data over China. Science China Earth Sciences, 2017, 60, 328-340.	5.2	5
45	The characteristics and simulation of close leader/return stroke field change waveforms. Radio Science, 2011, 46, .	1.6	4
46	Measurement report: Vertical profiling of particle size distributions over Lhasa, Tibet – tethered balloon-based in situ measurements and source apportionment. Atmospheric Chemistry and Physics, 2022, 22, 6217-6229.	4.9	4
47	Influence of NOX, Cl, and Br on the upper core of the ozone valley over the Tibetan Plateau during summer: Simulations with a box model. Science of the Total Environment, 2022, 817, 152776.	8.0	3
48	Contributions of Various Sources to the Higher-Concentration Center of CO within the ASM Anticyclone Based on GEOS-Chem Simulations. Remote Sensing, 2022, 14, 3322.	4.0	3
49	Ground-Based MAX-DOAS Measurements of Tropospheric Aerosols, NO2, and HCHO Distributions in the Urban Environment of Shanghai, China. Remote Sensing, 2022, 14, 1726.	4.0	2
50	Unusual discrepancy between TOMS and ground-based measurements of the total ozone in 2002?2003. Science Bulletin, 2005, 50, 606.	1.7	1
51	Aerosol Optical Radiation Properties in Kunming (the Low–Latitude Plateau of China) and Their Relationship to the Monsoon Circulation Index. Remote Sensing, 2019, 11, 2911.	4.0	1
52	Unusual discrepancy between TOMS and ground-based measurements of the total ozone in 2002–2003. Science Bulletin, 2005, 50, 606-608.	1.7	0