
Ari Elson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2302833/publications.pdf Version: 2024-02-01

ADI FISON

#	Article	IF	CITATIONS
1	PTPRJ promotes osteoclast maturation and activity by inhibiting Cblâ€mediated ubiquitination of NFATc1 in late osteoclastogenesis. FEBS Journal, 2021, 288, 4702-4723.	2.2	7
2	Role of OSCAR Signaling in Osteoclastogenesis and Bone Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 641162.	1.8	31
3	An SNX10-dependent mechanism downregulates fusion between mature osteoclasts. Journal of Cell Science, 2021, 134, .	1.2	11
4	Sorting Nexin 10 as a Key Regulator of Membrane Trafficking in Bone-Resorbing Osteoclasts: Lessons Learned From Osteopetrosis. Frontiers in Cell and Developmental Biology, 2021, 9, 671210.	1.8	7
5	Editorial: Developmental Biology and Regulation of Osteoclasts. Frontiers in Cell and Developmental Biology, 2021, 9, 769320.	1.8	0
6	Massive osteopetrosis caused by non-functional osteoclasts in R51Q SNX10 mutant mice. Bone, 2020, 136, 115360.	1.4	10
7	The roles of protein tyrosine phosphatases in bone-resorbing osteoclasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 114-123.	1.9	32
8	Kinetic Modeling of DUSP Regulation in Herceptin-Resistant HER2-Positive Breast Cancer. Genes, 2019, 10, 568.	1.0	2
9	Modelling the role of dual specificity phosphatases in herceptin resistant breast cancer cell lines. Computational Biology and Chemistry, 2019, 80, 138-146.	1.1	4
10	Protein tyrosine phosphatase alpha inhibits hypothalamic leptin receptor signaling and regulates body weight <i>in vivo</i> . FASEB Journal, 2019, 33, 5101-5111.	0.2	3
11	Phosphorylation of the phosphatase PTPROt at Tyr ³⁹⁹ is a molecular switch that controls osteoclast activity and bone mass in vivo. Science Signaling, 2019, 12, .	1.6	9
12	Stepping out of the shadows: Oncogenic and tumor-promoting protein tyrosine phosphatases. International Journal of Biochemistry and Cell Biology, 2018, 96, 135-147.	1.2	29
13	Regulation of dual specificity phosphatases in breast cancer during initial treatment with Herceptin: a Boolean model analysis. BMC Systems Biology, 2018, 12, 11.	3.0	9
14	Regulation of receptor-type protein tyrosine phosphatases by their C-terminal tail domains. Biochemical Society Transactions, 2016, 44, 1295-1303.	1.6	7
15	Production of Osteoclasts for Studying Protein Tyrosine Phosphatase Signaling. Methods in Molecular Biology, 2016, 1447, 283-300.	0.4	1
16	Receptor Protein Tyrosine Phosphatase α–Mediated Enhancement of Rheumatoid Synovial Fibroblast Signaling and Promotion of Arthritis in Mice. Arthritis and Rheumatology, 2016, 68, 359-369.	2.9	24
17	Metabolic regulation by protein tyrosine phosphatases. Journal of Biomedical Research, 2014, 28, 157-68.	0.7	11
18	Adaptor Protein GRB2 Promotes Src Tyrosine Kinase Activation and Podosomal Organization by Protein-tyrosine Phosphatase ϵ in Osteoclasts. Journal of Biological Chemistry, 2014, 289, 36048-36058.	1.6	28

Ari Elson

#	Article	IF	CITATIONS
19	Protein tyrosine phosphatases ε and α perform nonredundant roles in osteoclasts. Molecular Biology of the Cell, 2014, 25, 1808-1818.	0.9	15
20	Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2013, 1836, 211-226.	3.3	37
21	Protein tyrosine phosphatases in health and disease. FEBS Journal, 2013, 280, 708-730.	2.2	139
22	Epidermal Growth Factor Receptor (EGFR)-mediated Positive Feedback of Protein-tyrosine Phosphatase Ϊμ (ΡΤΡΪμ) on ERK1/2 and AKT Protein Pathways Is Required for Survival of Human Breast Cancer Cells. Journal of Biological Chemistry, 2012, 287, 3433-3444.	1.6	21
23	Expression Profiling during Mammary Epithelial Cell Three-Dimensional Morphogenesis Identifies PTPRO as a Novel Regulator of Morphogenesis and ErbB2-Mediated Transformation. Molecular and Cellular Biology, 2012, 32, 3913-3924.	1.1	34
24	Protein Tyrosine Phosphatase Epsilon Affects Body Weight by Downregulating Leptin Signaling in a Phosphorylation-Dependent Manner. Cell Metabolism, 2011, 13, 562-572.	7.2	59
25	Protein Tyrosine Phosphatase Epsilon Regulates Integrin-mediated Podosome Stability in Osteoclasts by Activating Src. Molecular Biology of the Cell, 2009, 20, 4324-4334.	0.9	53
26	Protein tyrosine phosphatase epsilon and Neu-induced mammary tumorigenesis. Cancer and Metastasis Reviews, 2008, 27, 193-203.	2.7	12
27	Protein tyrosine phosphatases in osteoclast differentiation, adhesion, and bone resorption. European Journal of Cell Biology, 2008, 87, 479-490.	1.6	33
28	Cytosolic Protein Tyrosine Phosphatase-ε Is a Negative Regulator of Insulin Signaling in Skeletal Muscle. Endocrinology, 2008, 149, 605-614.	1.4	39
29	Association of Tyrosine Phosphatase Epsilon with Microtubules Inhibits Phosphatase Activity and Is Regulated by the Epidermal Growth Factor Receptor. Molecular and Cellular Biology, 2007, 27, 7102-7112.	1.1	31
30	Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature Medicine, 2006, 12, 657-664.	15.2	697
31	Tyrosine Phosphatases ε and α Perform Specific and Overlapping Functions in Regulation of Voltage-gated Potassium Channels in Schwann Cells. Molecular Biology of the Cell, 2006, 17, 4330-4342.	0.9	27
32	Tyrosine Phosphatase Epsilon Is a Positive Regulator of Osteoclast Function in Vitro and In Vivo. Molecular Biology of the Cell, 2004, 15, 234-244.	0.9	82
33	Protein tyrosine phosphatase epsilon activates Yes and Fyn in Neu-induced mammary tumor cells. Experimental Cell Research, 2004, 294, 236-243.	1.2	35
34	Dimerization In Vivo and Inhibition of the Nonreceptor Form of Protein Tyrosine Phosphatase Epsilon. Molecular and Cellular Biology, 2003, 23, 5460-5471.	1.1	51
35	Phosphorylation-dependent Regulation of Kv2.1 Channel Activity at Tyrosine 124 by Src and by Protein-tyrosine Phosphatase ε. Journal of Biological Chemistry, 2003, 278, 17509-17514.	1.6	57
36	Tyrosine Phosphatase-ε Activates Src and Supports the Transformed Phenotype of Neu-induced Mammary Tumor Cells. Journal of Biological Chemistry, 2003, 278, 15579-15586.	1.6	88

Ari Elson

#	Article	IF	CITATIONS
37	Protein tyrosine phosphatase epsilon inhibits signaling by mitogen-activated protein kinases. Molecular Cancer Research, 2003, 1, 541-50.	1.5	37
38	Nuclear Localization of Non-receptor Protein Tyrosine Phosphatase ε Is Regulated by Its Unique N-Terminal Domain. Experimental Cell Research, 2002, 281, 182-189.	1.2	18
39	Comparative study of protein tyrosine phosphatase-E isoforms: membrane localization confers specificity in cellular signalling. Biochemical Journal, 2001, 354, 581.	1.7	39
40	Comparative study of protein tyrosine phosphatase-É› isoforms: membrane localization confers specificity in cellular signalling. Biochemical Journal, 2001, 354, 581-590.	1.7	59
41	Regulation of Protein-tyrosine Phosphatases α and ε by Calpain-mediated Proteolytic Cleavage. Journal of Biological Chemistry, 2001, 276, 31772-31779.	1.6	62
42	Generation of novel cytoplasmic forms of protein tyrosine phosphatase epsilon by proteolytic processing and translational control. Oncogene, 2000, 19, 4375-4384.	2.6	60
43	The transmembranal and cytoplasmic forms of protein tyrosine phosphatase epsilon physically associate with the adaptor molecule Grb2. Oncogene, 1999, 18, 5024-5031.	2.6	28
44	Protein tyrosine phosphatase ε increases the risk of mammary hyperplasia and mammary tumors in transgenic mice. Oncogene, 1999, 18, 7535-7542.	2.6	54
45	atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nature Genetics, 1997, 16, 397-401.	9.4	216
46	Protein-tyrosine Phosphatase ϵ. Journal of Biological Chemistry, 1995, 270, 26116-26122.	1.6	79
47	Protein kinase C (PKC) level is increased in PC12 cells overexpressing transfected liver-type phosphofructokinase. Biology of the Cell, 1994, 81, 23-29.	0.7	5
48	cyt-PTPe. The AFCS-nature Molecule Pages, 0, , .	0.2	0
49	RPTPe. The AFCS-nature Molecule Pages, 0, , .	0.2	0