Ming-Hui Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2302499/publications.pdf

Version: 2024-02-01

159585 197818 2,516 60 30 49 citations g-index h-index papers 60 60 60 3849 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Donor-acceptor-donor type organic spacer for regulating the quantum wells of Dion-Jacobson 2D perovskites. Nano Energy, 2022, 93, 106800.	16.0	20
2	Regulating the phase stability and bandgap of quasi-2D Dion–Jacobson CsSnI ₃ perovskite <i>via</i> intercalating organic cations. Journal of Materials Chemistry A, 2022, 10, 3996-4005.	10.3	8
3	Self-assembled interlayer aiming at the stability of NiO based perovskite solar cells. Journal of Energy Chemistry, 2022, 69, 211-220.	12.9	20
4	High areal energy density and super durable aqueous rechargeable NiCo//Zn battery with hierarchical structural cobalt–nickel phosphate octahydrate as binder-free cathode. Chemical Engineering Journal, 2022, 450, 138035.	12.7	17
5	Precursor engineering for high-quality Cs ₂ AgBiBr ₆ films toward efficient lead-free double perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 9659-9669.	5.5	22
6	Tailored Electronic Band Gap and Valance Band Edge of Nickel Oxide via p-Type Incorporation. Journal of Physical Chemistry C, 2021, 125, 7495-7501.	3.1	12
7	2Dâ€MA ₃ Sb ₂ I ₉ Back Surface Field for Efficient and Stable Perovskite Solar Cells. Small Methods, 2021, 5, e2001090.	8.6	8
8	Firstâ€Principles Optimization of Outâ€ofâ€Plane Charge Transport in Dion–Jacobson CsPbl ₃ Perovskites with Ï€â€Conjugated Aromatic Spacers. Advanced Functional Materials, 2021, 31, 2102330.	14.9	51
9	Linearly Tailored Work Function of Orthorhombic CsSnI ₃ Perovskites. ACS Energy Letters, 2021, 6, 2328-2335.	17.4	11
10	Improved piezoresistive properties of ZnO/SiC nanowire heterojunctions with an optimized piezoelectric nanolayer. Journal of Materials Science, 2021, 56, 17146-17155.	3.7	5
11	Stabilizing orthorhombic CsSnI ₃ perovskites with optimized electronic properties by surface ligands with inter-molecular hydrogen bond. Journal of Materials Chemistry A, 2021, 9, 24641-24649.	10.3	9
12	Achieving Efficient and Stable Perovskite Solar Cells in Ambient Air Through Nonâ€Halide Engineering. Advanced Energy Materials, 2021, 11, 2102169.	19.5	35
13	Organic intercalation engineering of quasi-2D Dion–Jacobson α-CsPbl ₃ perovskites. Materials Horizons, 2020, 7, 1042-1050.	12.2	55
14	Enhancing the Stability of Orthorhombic CsSnI ₃ Perovskite <i>via</i> Oriented π-Conjugated Ligand Passivation. ACS Applied Materials & Diversary (12, 34462-34469).	8.0	26
15	Imidazolium Ionic Liquid as Organic Spacer for Tuning the Excitonic Structure of 2D Perovskite Materials. ACS Energy Letters, 2020, 5, 3617-3627.	17.4	24
16	Pbâ€Reduced CsPb _{0.9} Zn _{0.1} I ₂ Br Thin Films for Efficient Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900896.	19.5	150
17	Bandgap alignment of \hat{l} ±-CsPbI3 perovskites with synergistically enhanced stability and optical performance via B-site minor doping. Nano Energy, 2019, 61, 389-396.	16.0	67
18	Electron-beam irradiation-hard metal-halide perovskite nanocrystals. Journal of Materials Chemistry A, 2019, 7, 10912-10917.	10.3	30

#	Article	IF	Citations
19	Stable Bandgap-Tunable Hybrid Perovskites with Alloyed Pb–Ba Cations for High-Performance Photovoltaic Applications. Journal of Physical Chemistry Letters, 2019, 10, 59-66.	4.6	44
20	Extrinsic Movable Ions in MAPbl ₃ Modulate Energy Band Alignment in Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701981.	19.5	62
21	Doping concentration-dependent photoluminescence properties of Mn-doped Zn–In–S quantum dots. Journal of Materials Science, 2018, 53, 1286-1296.	3.7	17
22	Significantly Improved Photocatalytic Hydrogen Production Activity over Ultrafine Mesoporous TiO ₂ Nanofibers Photocatalysts. ChemistrySelect, 2018, 3, 10126-10132.	1.5	8
23	Elimination of S Vacancy as the Cause for the n-Type Behavior of MoS ₂ from the First-Principles Perspective. Journal of Physical Chemistry Letters, 2018, 9, 6032-6037.	4.6	12
24	Packaging BiVO4 nanoparticles in ZnO microbelts for efficient photoelectrochemical hydrogen production. Electrochimica Acta, 2018, 283, 497-508.	5.2	36
25	In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbl ₂ Br Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1801050.	19.5	195
26	Wurtzite AlN(0001) Surface Oxidation: Hints from Ab Initio Calculations. ACS Applied Materials & Amp; Interfaces, 2018, 10, 30811-30818.	8.0	30
27	Inorganic and Lead-Free AgBil ₄ Rudorffite for Stable Solar Cell Applications. ACS Applied Energy Materials, 2018, 1, 4485-4492.	5.1	58
28	Enhancing the Performance of Quantum Dot Light-Emitting Diodes Using Room-Temperature-Processed Ga-Doped ZnO Nanoparticles as the Electron Transport Layer. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15605-15614.	8.0	113
29	Mesoporous Ag@TiO ₂ nanofibers and their photocatalytic activity for hydrogen evolution. RSC Advances, 2017, 7, 30051-30059.	3.6	27
30	Ba2+ Doped CH3NH3PbI3 to Tune the Energy State and Improve the Performance of Perovskite Solar Cells. Electrochimica Acta, 2017, 254, 165-171.	5.2	44
31	Superior B-Doped SiC Nanowire Flexible Field Emitters: Ultra-Low Turn-On Fields and Robust Stabilities against Harsh Environments. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35178-35190.	8.0	34
32	Dopant-controlled photoluminescence of Ag-doped Zn–In–S nanocrystals. Journal of Materials Research, 2017, 32, 3585-3592.	2.6	4
33	Enhanced visible-light responsive photocatalytic activity of N-doped TiO2 thoroughly mesoporous nanofibers. Journal of Materials Science: Materials in Electronics, 2017, 28, 3796-3805.	2.2	27
34	Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO ₂ /WO ₃ /g-C ₃ N ₄ nanofibers for visible-light-driven hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 6276-6281.	10.3	119
35	SiC Nanowire Film Photodetectors: A Promising Candidate Toward High Temperature Photodetectors. Journal of Nanoscience and Nanotechnology, 2016, 16, 3796-3801.	0.9	12
36	Study of Ac Dielectrophoretic Process of SiC Nanowires: A Universal Method for Alignment of Semiconductor Nanowires. Journal of Nanoscience and Nanotechnology, 2016, 16, 3925-3929.	0.9	2

#	Article	IF	Citations
37	Fabrication of Mg-doped ZnO nanofibers with high purities and tailored band gaps. Ceramics International, 2016, 42, 10021-10029.	4.8	40
38	Bi-doped Sb ₂ S ₃ for low effective mass and optimized optical properties. Journal of Materials Chemistry C, 2016, 4, 5081-5090.	5.5	23
39	Extremely Stable Current Emission of Pâ€Doped SiC Flexible Field Emitters. Advanced Science, 2016, 3, 1500256.	11.2	53
40	n-Type Doping and Energy States Tuning in CH ₃ NH ₃ Pb _{1–<i>x</i>} Sb _{2<i>x</i>/3} I ₃ Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 535-541.	17.4	160
41	Robust and Stable Ratiometric Temperature Sensor Based on Zn–In–S Quantum Dots with Intrinsic Dualâ€Dopant Ion Emissions. Advanced Functional Materials, 2016, 26, 7224-7233.	14.9	53
42	Current emission from P-doped SiC nanowires with ultralow turn-on fields. Journal of Materials Chemistry C, 2016, 4, 7391-7396.	5.5	34
43	Highly Efficient Photocatalytic Hydrogen Evolution in Ternary Hybrid TiO ₂ /CuO/Cu Thoroughly Mesoporous Nanofibers. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20128-20137.	8.0	160
44	Fabrication of highly oriented 4H-SiC gourd-shaped nanowire arrays and their field emission properties. Journal of Materials Chemistry C, 2016, 4, 5195-5201.	5.5	31
45	A giant negative piezoresistance effect in 3C-SiC nanowires with B dopants. Journal of Materials Chemistry C, 2016, 4, 6466-6472.	5.5	34
46	Efficient Photocatalytic Activities of TiO2 Hollow Fibers with Mixed Phases and Mesoporous Walls. Scientific Reports, 2015, 5, 15228.	3.3	73
47	Bifunctional Alkyl Chain Barriers for Efficient Perovskite Solar Cells. , 2015, , .		0
48	Highly flexible and robust N-doped SiC nanoneedle field emitters. NPG Asia Materials, 2015, 7, e157-e157.	7.9	66
49	Foaming-assisted electrospinning of large-pore mesoporous ZnO nanofibers with tailored structures and enhanced photocatalytic activity. RSC Advances, 2015, 5, 16361-16367.	3.6	26
50	Bifunctional alkyl chain barriers for efficient perovskite solar cells. Chemical Communications, 2015, 51, 7047-7050.	4.1	135
51	High-performance solar-blind ultraviolet photodetector based on electrospun TiO2-ZnTiO3 heterojunction nanowires. Nano Research, 2015, 8, 2822-2832.	10.4	53
52	Carrier transport in graphite/Si3N4-nanobelt/PtIr Schottky barrier diodes. Applied Physics Letters, 2014, 105, 191604.	3.3	5
53	Enhanced field emission of p-type 3C-SiC nanowires with B dopants and sharp corners. Journal of Materials Chemistry C, 2014, 2, 4515-4520.	5.5	38
54	Piezoresistance in Si ₃ N ₄ nanobelts: toward highly sensitive and reliable pressure sensors. Journal of Materials Chemistry C, 2014, 2, 10062-10066.	5.5	12

#	Article	IF	CITATION
55	Long-lived and Well-resolved Mn2+ Ion Emissions in CuInS-ZnS Quantum Dots. Scientific Reports, 2014, 4, 7510.	3.3	66
56	Recoil Effects in Valence Band Photoemission of Organic Solids. Analytical Chemistry, 2013, 85, 3739-3745.	6.5	4
57	Recoil effects for valence and core photoelectrons in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">V</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> Si. Physical Review B. 2012. 86	3.2	12
58	Recoil Effects in Valence Photoemission from Simple Molecules and Clusters. E-Journal of Surface Science and Nanotechnology, 2012, 10, 128-132.	0.4	4
59	Photoemission from valence bands of transition metal-phthalocyanines. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184, 261-264.	1.7	12
60	The Evolution of Geometric and Electronic Structures for the Hydrogen Storage on Small Ti _{<i>n</i>} (<i>n</i> = 2â^²7) Clusters. Journal of Physical Chemistry C, 2009, 113, 15507-15513.	3.1	8