Neekesh V Dharia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/23023/publications.pdf

Version: 2024-02-01

43 papers 5,014 citations

201674 27 h-index 315739 38 g-index

46 all docs

46 docs citations

46 times ranked

9162 citing authors

#	Article	IF	CITATIONS
1	An <i>In Vivo</i> CRISPR Screening Platform for Prioritizing Therapeutic Targets in AML. Cancer Discovery, 2022, 12, 432-449.	9.4	32
2	EP300 Selectively Controls the Enhancer Landscape of <i>MYCN</i> -Amplified Neuroblastoma. Cancer Discovery, 2022, 12, 730-751.	9.4	64
3	A distinct core regulatory module enforces oncogene expression in KMT2A-rearranged leukemia. Genes and Development, 2022, 36, 368-389.	5.9	14
4	Unleashing Cell-Intrinsic Inflammation as a Strategy to Kill AML Blasts. Cancer Discovery, 2022, 12, 1760-1781.	9.4	15
5	Transcriptional Plasticity Drives Leukemia Immune Escape. Blood Cancer Discovery, 2022, 3, 394-409.	5.0	8
6	Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia. Nature Cancer, 2021, 2, 284-299.	13.2	70
7	Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory, or High-Risk Leukemias: A Report from the LEAP Consortium. Cancer Discovery, 2021, 11, 1424-1439.	9.4	16
8	A first-generation pediatric cancer dependency map. Nature Genetics, 2021, 53, 529-538.	21.4	76
9	Selective Modulation of a Pan-Essential Protein as a Therapeutic Strategy in Cancer. Cancer Discovery, 2021, 11, 2282-2299.	9.4	21
10	STAG2 loss rewires oncogenic and developmental programs to promote metastasis in Ewing sarcoma. Cancer Cell, 2021, 39, 827-844.e10.	16.8	49
11	Gene Fusions Create Partner and Collateral Dependencies Essential to Cancer Cell Survival. Cancer Research, 2021, 81, 3971-3984.	0.9	11
12	TRIM8 modulates the EWS/FLI oncoprotein to promote survival in Ewing sarcoma. Cancer Cell, 2021, 39, 1262-1278.e7.	16.8	49
13	An In Vivo CRISPR Screening Platform to Identify New Therapeutic Targets in AML. Blood, 2021, 138, 266-266.	1.4	O
14	SLC5A3 Transports Myo-Inositol to Support the Growth of Acute Myeloid Leukemia. Blood, 2021, 138, 3319-3319.	1.4	0
15	Unleashing Cell-Intrinsic Inflammation As a Strategy to Kill AML Blasts. Blood, 2021, 138, 3305-3305.	1.4	1
16	Synthetic Lethal Interaction between the ESCRT Paralog Enzymes VPS4A and VPS4B in Cancers Harboring Loss of Chromosome 18q or 16q. Cell Reports, 2020, 33, 108493.	6.4	28
17	Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in Pediatric Rhabdoid Tumors. Cell Reports, 2019, 28, 2331-2344.e8.	6.4	24
18	Neuronal differentiation and cell-cycle programs mediate response to BET-bromodomain inhibition in MYC-driven medulloblastoma. Nature Communications, 2019, 10, 2400.	12.8	37

#	Article	IF	CITATIONS
19	MDM2 and MDM4 Are Therapeutic Vulnerabilities in Malignant Rhabdoid Tumors. Cancer Research, 2019, 79, 2404-2414.	0.9	43
20	CRISPR studies identify genes preferentially essential for myeloma cells vs. other neoplasias: implications for future therapies selective against MM. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e48-e49.	0.4	0
21	A Combination CDK4/6 and IGF1R Inhibitor Strategy for Ewing Sarcoma. Clinical Cancer Research, 2019, 25, 1343-1357.	7.0	69
22	EWS/FLI Confers Tumor Cell Synthetic Lethality to CDK12 Inhibition in Ewing Sarcoma. Cancer Cell, 2018, 33, 202-216.e6.	16.8	116
23	Precision Targeting of BFL-1/A1 and an ATM Co-dependency in Human Cancer. Cell Reports, 2018, 24, 3393-3403.e5.	6.4	15
24	Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nature Communications, 2018, 9, 2024.	12.8	80
25	Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in <i>TP53</i> wild-type Ewing sarcoma. Journal of Experimental Medicine, 2018, 215, 2137-2155.	8.5	55
26	Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry. Nature Genetics, 2018, 50, 1240-1246.	21.4	199
27	Comparative proteomics reveals a diagnostic signature for pulmonary headâ€andâ€neck cancerÂmetastasis. EMBO Molecular Medicine, 2018, 10, .	6.9	41
28	Esterase mutation is a mechanism of resistance to antimalarial compounds. Nature Communications, 2017, 8, 14240.	12.8	47
29	Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nature Genetics, 2017, 49, 1779-1784.	21.4	1,436
30	CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. Journal of Clinical Investigation, 2017, 128, 446-462.	8.2	117
31	Answer to May 2015 Photo Quiz. Journal of Clinical Microbiology, 2015, 53, 1788-1788.	3.9	0
32	Photo Quiz: A Child with Fever after Hematopoietic Stem Cell Transplantation: FIG 1. Journal of Clinical Microbiology, 2015, 53, 1463-1463.	3.9	0
33	Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families. PLoS Genetics, 2013, 9, e1003293.	3.5	192
34	A Chemical Genomic Analysis of Decoquinate, a <i>Plasmodium falciparum</i> Cytochrome <i>b</i> Inhibitor. ACS Chemical Biology, 2011, 6, 1214-1222.	3.4	84
35	Imaging of <i>Plasmodium</i> Liver Stages to Drive Next-Generation Antimalarial Drug Discovery. Science, 2011, 334, 1372-1377.	12.6	308
36	Piperaquine Resistance Is Associated with a Copy Number Variation on Chromosome 5 in Drug-Pressured <i>Plasmodium falciparum</i> Parasites. Antimicrobial Agents and Chemotherapy, 2011, 55, 3908-3916.	3.2	102

3

#	Article	lF	CITATIONS
37	Validation of isoleucine utilization targets in <i>Plasmodium falciparum</i> National Academy of Sciences of the United States of America, 2011, 108, 1627-1632.	7.1	123
38	Spiroindolones, a Potent Compound Class for the Treatment of Malaria. Science, 2010, 329, 1175-1180.	12.6	1,031
39	Whole-genome sequencing and microarray analysis of ex vivo <i>Plasmodium vivax</i> reveal selective pressure on putative drug resistance genes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20045-20050.	7.1	99
40	A Systems-Based Analysis of Plasmodium vivax Lifecycle Transcription from Human to Mosquito. PLoS Neglected Tropical Diseases, 2010, 4, e653.	3.0	96
41	Genome scanning of Amazonian <i>Plasmodium falciparum</i> shows subtelomeric instability and clindamycin-resistant parasites. Genome Research, 2010, 20, 1534-1544.	5 . 5	59
42	Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes. BMC Genomics, 2009, 10, 610.	2.8	67
43	Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum. Genome Biology, 2009, 10, R21.	9.6	120