
W Nathaniel Brennen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2302240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rationale Behind Targeting Fibroblast Activation Protein–Expressing Carcinoma-Associated Fibroblasts as a Novel Chemotherapeutic Strategy. Molecular Cancer Therapeutics, 2012, 11, 257-266.	1.9	204
2	Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise. Stem Cells Translational Medicine, 2018, 7, 651-663.	1.6	192
3	Engineering a Prostate-Specific Membrane Antigen–Activated Tumor Endothelial Cell Prodrug for Cancer Therapy. Science Translational Medicine, 2012, 4, 140ra86.	5.8	187
4	Targeting Carcinoma-Associated Fibroblasts Within the Tumor Stroma With a Fibroblast Activation Protein-Activated Prodrug. Journal of the National Cancer Institute, 2012, 104, 1320-1334.	3.0	155
5	Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Molecular Cancer Therapeutics, 2009, 8, 1378-1386.	1.9	138
6	Fibroblast Activation Protein Peptide Substrates Identified from Human Collagen I Derived Gelatin Cleavage Sites. Biochemistry, 2008, 47, 1076-1086.	1.2	76
7	Quantification of Mesenchymal Stem Cells (MSCs) at Sites of Human Prostate Cancer. Oncotarget, 2013, 4, 106-117.	0.8	75
8	A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. Biomaterials, 2016, 91, 140-150.	5.7	68
9	Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors. Oncogene, 2020, 39, 6935-6949.	2.6	60
10	Tumorâ€infiltrating mesenchymal stem cells: Drivers of the immunosuppressive tumor microenvironment in prostate cancer?. Prostate, 2019, 79, 320-330.	1.2	58
11	Mesenchymal stem cells as a vector for the inflammatory prostate microenvironment. Endocrine-Related Cancer, 2013, 20, R269-R290.	1.6	57
12	A Phase I Study to Assess the Safety and Cancer-Homing Ability of Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells in Men with Localized Prostate Cancer. Stem Cells Translational Medicine, 2019, 8, 441-449.	1.6	50
13	Asporin Restricts Mesenchymal Stromal Cell Differentiation, Alters the Tumor Microenvironment, and Drives Metastatic Progression. Cancer Research, 2019, 79, 3636-3650.	0.4	47
14	Cell-type specific expression of oncogenic and tumor suppressive microRNAs in the human prostate and prostate cancer. Scientific Reports, 2018, 8, 7189.	1.6	41
15	Supraphysiologic Testosterone Induces Ferroptosis and Activates Immune Pathways through Nucleophagy in Prostate Cancer. Cancer Research, 2021, 81, 5948-5962.	0.4	30
16	Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nature Reviews Urology, 2018, 15, 703-715.	1.9	27
17	Mesenchymal stem cell infiltration during neoplastic transformation of the human prostate. Oncotarget, 2017, 8, 46710-46727.	0.8	25
18	Pharmacokinetics and toxicology of a fibroblast activation protein (FAP)â€activated prodrug in murine xenograft models of human cancer. Prostate, 2014, 74, 1308-1319.	1.2	24

#	Article	IF	CITATIONS
19	Iterative design of emetineâ€based prodrug targeting fibroblast activation protein (FAP) and dipeptidyl peptidase IV DPPIV using a tandem enzymatic activation strategy. Prostate, 2016, 76, 703-714.	1.2	22
20	Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer. JCI Insight, 2021, 6, .	2.3	22
21	Rapid selection of mesenchymal stem and progenitor cells in primary prostate stromal cultures. Prostate, 2016, 76, 552-564.	1.2	21
22	Stromal CAVIN1 Controls Prostate Cancer Microenvironment and Metastasis by Modulating Lipid Distribution and Inflammatory Signaling. Molecular Cancer Research, 2020, 18, 1414-1426.	1.5	19
23	Assessing angiogenic responses induced by primary human prostate stromal cells in a three-dimensional fibrin matrix assay. Oncotarget, 2016, 7, 71298-71308.	0.8	17
24	Cellular Origin of Androgen Receptor Pathway-Independent Prostate Cancer and Implications for Therapy. Cancer Cell, 2017, 32, 399-401.	7.7	15
25	Albumin-linked prostate-specific antigen-activated thapsigargin- and niclosamide-based molecular grenades targeting the microenvironment in metastatic castration-resistant prostate cancer. Asian Journal of Urology, 2019, 6, 99-108.	0.5	15
26	Rationale for bipolar androgen therapy (BAT) for metastatic prostate cancer. Cell Cycle, 2017, 16, 1639-1640.	1.3	14
27	The what, when, and why of human prostate cancer xenografts. Prostate, 2018, 78, 646-654.	1.2	14
28	Overcoming stromal barriers to immuno-oncological responses via fibroblast activation protein-targeted therapy. Immunotherapy, 2021, 13, 155-175.	1.0	12
29	Characterization of tumorâ€associated macrophages in prostate cancer transgenic mouse models. Prostate, 2021, 81, 629-647.	1.2	10
30	Seneca Valley Virus 3Cpro Substrate Optimization Yields Efficient Substrates for Use in Peptide-Prodrug Therapy. PLoS ONE, 2015, 10, e0129103.	1.1	7
31	A hemiâ€spleen injection model of liver metastasis for prostate cancer. Prostate, 2020, 80, 1263-1269.	1.2	7
32	Serial bipolar androgen therapy (sBAT) using cyclic supraphysiologic testosterone (STP) to treat metastatic castration-resistant prostate cancer (mCRPC). Annals of Translational Medicine, 2019, 7, S311-S311.	0.7	6
33	PSA-selective activation of cytotoxic human serine proteases within the tumor microenvironment as a therapeutic strategy to target prostate cancer. Oncotarget, 2018, 9, 22436-22450.	0.8	5
34	A novel method for detection of exfoliated prostate cancer cells in urine by RNA in situ hybridization. Prostate Cancer and Prostatic Diseases, 2021, 24, 220-232.	2.0	3
35	Enhancement of the T-cell Armamentarium as a Cell-Based Therapy for Prostate Cancer. Cancer Research, 2014, 74, 3390-3395.	0.4	2
36	Microparticle Encapsulation of a Prostate-targeted Biologic for the Treatment of Liver Metastases in a Preclinical Model of Castration-resistant Prostate Cancer. Molecular Cancer Therapeutics, 2020, 19, 2353-2362.	1.9	2

#	Article	IF	CITATIONS
37	In Reply to the Letter to the Editor from Raj et al.: Clinical Evidence Indicates Allogeneic Mesenchymal Stem Cells Do Not Pose a Significant Risk for Cancer Progression in the Context of Cellâ€Based Drug Delivery. Stem Cells Translational Medicine, 2019, 8, 739-740.	1.6	1
38	Abstract 2896: Effects of hypoxia on normal prostate fibroblast and prostate cancer associated fibroblast metabolism and matrix degradation. , 2021, , .		1
39	There are gremlins in prostate cancer. Nature Cancer, 2022, 3, 530-531.	5.7	0