Tong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2302230/publications.pdf

Version: 2024-02-01

182 papers	5,948 citations	40 h-index	91712 69 g-index
186	186	186	656
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Wellâ€Posedness in Gevrey Function Space for 3D Prandtl Equations without Structural Assumption. Communications on Pure and Applied Mathematics, 2022, 75, 1755-1797.	1.2	14
2	The Navier–Stokes–Vlasov–Fokker–Planck System in Bounded Domains. Journal of Statistical Physics, 2022, 186, 1.	0.5	1
3	A New Stability and Convergence Proof of the FourierGalerkin Spectral Method for the Spatially Homogeneous Boltzmann Equation. SIAM Journal on Numerical Analysis, 2021, 59, 613-633.	1.1	6
4	Well-posedness of the MHD Boundary Layer System in Gevrey Function Space without Structural Assumption. SIAM Journal on Mathematical Analysis, 2021, 53, 3236-3264.	0.9	9
5	Optimal convergence rate of the vanishing shear viscosity limit for compressible Navier-Stokes equations with cylindrical symmetry. Journal Des Mathematiques Pures Et Appliquees, 2021, 146, 99-126.	0.8	5
6	Spectrum Analysis for the Vlasov–Poisson–Boltzmann System. Archive for Rational Mechanics and Analysis, 2021, 241, 311-355.	1.1	2
7	Uniform regularity and vanishing viscosity limit for the incompressible non-resistive MHD system with TMF. Communications on Pure and Applied Analysis, 2021, 20, 2725.	0.4	5
8	Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic and Related Models, 2021, 14, 211.	0.5	5
9	Global Classical Solutions for the Vlasov-Nordström-Fokker-Planck System. SIAM Journal on Mathematical Analysis, 2021, 53, 6164-6190.	0.9	O
10	Study of boundary layers in compressible non-isentropic flows. Methods and Applications of Analysis, 2021, 28, 453-466.	0.1	2
11	Green's Function and Pointwise Space-time Behaviors of the Vlasov-Poisson-Boltzmann System. Archive for Rational Mechanics and Analysis, 2020, 235, 1011-1057.	1.1	7
12	Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces. Journal of Functional Analysis, 2020, 279, 108637.	0.7	28
13	MHD Boundary Layers Theory in Sobolev Spaces Without Monotonicity I: Wellâ€Posedness Theory. Communications on Pure and Applied Mathematics, 2019, 72, 63-121.	1.2	60
14	Justification of Prandtl Ansatz for MHD Boundary Layer. SIAM Journal on Mathematical Analysis, 2019, 51, 2748-2791.	0.9	39
15	Exterior Problem of the Linear VlasovPoissonBoltzmann System. SIAM Journal on Mathematical Analysis, 2019, 51, 1792-1823.	0.9	O
16	Vanishing shear viscosity limit and boundary layer study for the planar MHD system. Mathematical Models and Methods in Applied Sciences, 2019, 29, 1139-1174.	1.7	8
17	Lifespan of Solutions to MHD Boundary Layer Equations with Analytic Perturbation of General Shear Flow. Acta Mathematicae Applicatae Sinica, 2019, 35, 209-229.	0.4	18
18	Local-in-time well-posedness for compressible MHD boundary layer. Journal of Differential Equations, 2019, 266, 2978-3013.	1.1	11

#	Article	IF	CITATIONS
19	Well-posedness in Gevrey function spaces for the Prandtl equations with non-degenerate critical points. Journal of the European Mathematical Society, 2019, 22, 717-775.	0.7	30
20	Stability of Nonlinear Wave Patterns to the Bipolar Vlasov–Poisson–Boltzmann System. Archive for Rational Mechanics and Analysis, 2018, 228, 39-127.	1.1	15
21	Global-in-Time Stability of 2D MHD Boundary Layer in the Prandtl-Hartmann Regime. SIAM Journal on Mathematical Analysis, 2018, 50, 5749-5760.	0.9	17
22	Global Solution for the Spatially Inhomogeneous Non-cutoff Kac Equation. SIAM Journal on Mathematical Analysis, 2018, 50, 4503-4562.	0.9	0
23	A note on the ill-posedness of shear flow for the MHD boundary layer equations. Science China Mathematics, 2018, 61, 2065-2078.	0.8	22
24	Moment classification of infinite energy solutions to the homogeneous Boltzmann equation. Analysis and Applications, 2017, 15, 391-411.	1.2	3
25	Global Well-Posedness of the Boltzmann Equation with Large Amplitude Initial Data. Archive for Rational Mechanics and Analysis, 2017, 225, 375-424.	1.1	26
26	A well-posedness theory for the Prandtl equations in three space variables. Advances in Mathematics, 2017, 308, 1074-1126.	0.5	22
27	The Vlasov–Maxwell–Boltzmann System Near Maxwellians in the Whole Space with Very Soft Potentials. Communications in Mathematical Physics, 2017, 351, 95-153.	1.0	15
28	Ill-posedness of the Prandtl equations in Sobolev spaces around a shear flow with general decay. Journal Des Mathematiques Pures Et Appliquees, 2017, 108, 150-162.	0.8	20
29	Convergence to self-similar solutions for the homogeneous Boltzmann equation. Journal of the European Mathematical Society, 2017, 19, 2241-2267.	0.7	4
30	Measure Valued Solutions to the Spatially Homogeneous Boltzmann Equation Without Angular Cutoff. Journal of Statistical Physics, 2016, 165, 866-906.	0.5	11
31	Probability Measures with Finite Moments and the Homogeneous Boltzmann Equation. SIAM Journal on Mathematical Analysis, 2016, 48, 2399-2413.	0.9	5
32	Justification of limit for the Boltzmann equation related to Korteweg theory. Quarterly of Applied Mathematics, 2016, 74, 719-764.	0.5	7
33	Spectrum Structure and Behaviors of the VlasovMaxwellBoltzmann Systems. SIAM Journal on Mathematical Analysis, 2016, 48, 595-669.	0.9	10
34	Spectrum Analysis of Some Kinetic Equations. Archive for Rational Mechanics and Analysis, 2016, 222, 731-768.	1.1	18
35	Time periodic solution to the compressible navier-stokes equations in a periodic domain. Acta Mathematica Scientia, 2016, 36, 1015-1029.	0.5	9
36	On the Ill-Posedness of the Prandtl Equations in Three-Dimensional Space. Archive for Rational Mechanics and Analysis, 2016, 220, 83-108.	1.1	35

#	Article	IF	CITATIONS
37	Global existence of weak solutions to the three-dimensional Prandtl equations with a special structure. Discrete and Continuous Dynamical Systems - Series S, 2016, 9, 2011-2029.	0.6	14
38	A new characterization and global regularity of infinite energy solutions to the homogeneous Boltzmann equation. Journal Des Mathematiques Pures Et Appliquees, 2015, 103, 809-829.	0.8	11
39	Local Well-Posedness of Prandtl Equations for Compressible Flow in Two Space Variables. SIAM Journal on Mathematical Analysis, 2015, 47, 321-346.	0.9	16
40	Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks. Science China Mathematics, 2015, 58, 653-672.	0.8	9
41	A study on the boundary layer for the planar magnetohydrodynamics system. Acta Mathematica Scientia, 2015, 35, 787-806.	0.5	7
42	Time periodic solution for a 3-D compressible Navier–Stokes system with an external force in <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi </mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow><td>1.1 l:msup> <!--</td--><td>17 mml:math>.</td></td></mml:msup></mml:math>	1.1 l:msup> </td <td>17 mml:math>.</td>	17 mml:math>.
43	Journal of Differential Equations, 2015, 259, 2576-2601. Vanishing Shear Viscosity and Boundary Layer for the Navier–Stokes Equations with Cylindrical Symmetry. Archive for Rational Mechanics and Analysis, 2015, 216, 1049-1086.	1.1	23
44	Smoothing effect of the homogeneous Boltzmann equation with measure valued initial datum. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2015, 32, 429-442.	0.7	11
45	Local existence of polynomial decay solutions to the Boltzmann equation for soft potentials. Analysis and Applications, 2015, 13, 663-683.	1.2	8
46	One-dimensional Compressible NavierStokes Equations with Temperature Dependent Transport Coefficients and Large Data. SIAM Journal on Mathematical Analysis, 2014, 46, 2185-2228.	0.9	56
47	Compressible Navier–Stokes approximation to the Boltzmann equation. Journal of Differential Equations, 2014, 256, 3770-3816.	1.1	9
48	Global Solutions to the One-Dimensional Compressible Navier-Stokes-Poisson Equations with Large Data. SIAM Journal on Mathematical Analysis, 2013, 45, 547-571.	0.9	63
49	THE VLASOV–POISSON–BOLTZMANN SYSTEM FOR SOFT POTENTIALS. Mathematical Models and Methods in Applied Sciences, 2013, 23, 979-1028.	1.7	48
50	The Limit of the Boltzmann Equation to the Euler Equations for Riemann Problems. SIAM Journal on Mathematical Analysis, 2013, 45, 1741-1811.	0.9	39
51	Local existence with mild regularity for the Boltzmann equation. Kinetic and Related Models, 2013, 6, 1011-1041.	0.5	29
52	Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic and Related Models, 2013, 6, 159-204.	0.5	42
53	Waiting Time for a Non-Newtonian Polytropic Filtration Equation with Convection. Series in Contemporary Applied Mathematics, 2012, , 447-452.	0.8	O
54	Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff. Kyoto Journal of Mathematics, 2012, 52, .	0.2	22

#	Article	IF	Citations
55	Long-time Behavior of Solutions to the Bipolar Hydrodynamic Model of Semiconductors with Boundary Effect. SIAM Journal on Mathematical Analysis, 2012, 44, 1134-1164.	0.9	41
56	On the Convergence Rate of Vanishing Viscosity Approximations for Nonlinear Hyperbolic Systems. SIAM Journal on Mathematical Analysis, 2012, 44, 3537-3563.	0.9	9
57	The Boltzmann Equation with Soft Potentials Near a Local Maxwellian. Archive for Rational Mechanics and Analysis, 2012, 206, 239-296.	1.1	13
58	Global solutions to the relativistic Landau–Maxwell system in the whole space. Journal Des Mathematiques Pures Et Appliquees, 2012, 97, 602-634.	0.8	15
59	Waiting time for a non-Newtonian polytropic filtration equation with convection. Journal of Differential Equations, 2012, 252, 4862-4885.	1.1	3
60	The Vlasov–Poisson–Boltzmann system in the whole space: The hard potential case. Journal of Differential Equations, 2012, 252, 6356-6386.	1.1	49
61	The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential. Journal of Functional Analysis, 2012, 262, 915-1010.	0.7	92
62	Vanishing Viscosity Limit of the Compressible Navier–Stokes Equations for Solutions to a Riemann Problem. Archive for Rational Mechanics and Analysis, 2012, 203, 379-413.	1.1	40
63	Compressible non-isentropic bipolar navier–stokes–poisson system in ℕ3. Acta Mathematica Scientia, 2011, 31, 2169-2194.	0.5	5
64	The Boltzmann Equation Without Angular Cutoff in the Whole Space: Qualitative Properties of Solutions. Archive for Rational Mechanics and Analysis, 2011, 202, 599-661.	1.1	57
65	Optimal Convergence Rates of Classical Solutions for Vlasov-Poisson-Boltzmann System. Communications in Mathematical Physics, 2011, 301, 319-355.	1.0	40
66	Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff. Communications in Mathematical Physics, 2011, 304, 513-581.	1.0	72
67	Bounded solutions of the Boltzmann equation in the whole space. Kinetic and Related Models, 2011, 4, 17-40.	0.5	14
68	Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential. Kinetic and Related Models, 2011, 4, 919-934.	0.5	6
69	A New Glimm Functional and Convergence Rate of Glimm Scheme for General Systems of Hyperbolic Conservation Laws. Archive for Rational Mechanics and Analysis, 2010, 196, 433-454.	1.1	6
70	Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation. Archive for Rational Mechanics and Analysis, 2010, 198, 39-123.	1.1	86
71	Hydrodynamic Limit of the Boltzmann Equation with Contact Discontinuities. Communications in Mathematical Physics, 2010, 295, 293-326.	1.0	36
72	Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space. Journal of Differential Equations, 2010, 248, 1518-1560.	1.1	44

#	Article	IF	CITATIONS
73	Time periodic solutions of compressible Navier–Stokes equations. Journal of Differential Equations, 2010, 248, 2275-2293.	1.1	37
74	Stability of the One-Species Vlasov–Poisson–Boltzmann System. SIAM Journal on Mathematical Analysis, 2010, 41, 2353-2387.	0.9	34
75	DIFFUSION IN A CONTINUUM MODEL OF SELF-PROPELLED PARTICLES WITH ALIGNMENT INTERACTION. Mathematical Models and Methods in Applied Sciences, 2010, 20, 1459-1490.	1.7	41
76	A NOTE ON THE NEW GLIMM FUNCTIONAL FOR GENERAL SYSTEMS OF HYPERBOLIC CONSERVATION LAWS. Mathematical Models and Methods in Applied Sciences, 2010, 20, 815-842.	1.7	3
77	Global Classical Solutions for the Vlasov–Maxwell–Fokker–Planck System. SIAM Journal on Mathematical Analysis, 2010, 42, 459-488.	0.9	28
78	Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic and Related Models, 2010, 3, 685-728.	0.5	59
79	A Lattice Boltzmann Method for Image Denoising. IEEE Transactions on Image Processing, 2009, 18, 2797-2802.	6.0	28
80	A combination of energy method and spectral analysis for study of equations of gas motion. Frontiers of Mathematics in China, 2009, 4, 253-282.	0.4	16
81	Time asymptotic behavior of the bipolar Navier-Stokes-Poisson system. Acta Mathematica Scientia, 2009, 29, 1721-1736.	0.5	37
82	Optimal convergence rates of Landau equation with external forcing in the whole space. Acta Mathematica Scientia, 2009, 29, 1035-1062.	0.5	9
83	A new nonlinear functional for general scalar conservation laws. Journal of Differential Equations, 2009, 246, 4284-4308.	1.1	0
84	<mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup>L<mml:mi>p</mml:mi></mml:msup></mml:math> convergence rates of planar waves for multi-dimensional Euler equations with damping. Journal of Differential Equations, 2009, 247, 303-329.	1.1	19
85	Regularity of solutions for the Boltzmann equation without angular cutoff. Comptes Rendus Mathematique, 2009, 347, 747-752.	0.1	6
86	Existence of local solutions for the Boltzmann equation without angular cutoff. Comptes Rendus Mathematique, 2009, 347, 1237-1242.	0.1	1
87	Kinetic Theory and Conservation Laws: An Introduction. Series in Contemporary Applied Mathematics, 2009, , 126-229.	0.8	1
88	Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure and Applied Analysis, 2009, 8, 473-491.	0.4	4
89	Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete and Continuous Dynamical Systems, 2009, 24, 187-212.	0.5	59
90	Uncertainty principle and kinetic equations. Journal of Functional Analysis, 2008, 255, 2013-2066.	0.7	40

#	Article	IF	Citations
91	Contact discontinuity with general perturbations for gas motions. Advances in Mathematics, 2008, 219, 1246-1297.	0.5	136
92	Stationary Problem of Boltzmann Equation. Handbook of Differential Equations: Stationary Partial Differential Equations, 2008, , 371-485.	0.7	0
93	PROPAGATION OF SINGULARITIES IN THE SOLUTIONS TO THE BOLTZMANN EQUATION NEAR EQUILIBRIUM. Mathematical Models and Methods in Applied Sciences, 2008, 18, 1093-1114.	1.7	17
94	Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete and Continuous Dynamical Systems, 2008, 23, 495-520.	0.5	5
95	Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinetic and Related Models, 2008, 1, 453-489.	0.5	48
96	OPTIMAL CONVERGENCE RATES FOR THE COMPRESSIBLE NAVIER–STOKES EQUATIONS WITH POTENTIAL FORCES. Mathematical Models and Methods in Applied Sciences, 2007, 17, 737-758.	1.7	181
97	Existence of boundary layers to the Boltzmann equation with cutoff soft potentials. Journal of Mathematical Physics, 2007, 48, .	0.5	11
98	Self-similar solutions and asymptotic behaviour for a class of degenerate and singular diffusion equations. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2007, 137, 581-602.	0.8	1
99	Navier–Stokes equations with degenerate viscosity, vacuum and gravitational force. Mathematical Methods in the Applied Sciences, 2007, 30, 347-374.	1.2	8
100	Uncertainty principle and regularity for Boltzmann type equations. Comptes Rendus Mathematique, 2007, 345, 673-677.	0.1	5
101	A nonlinear functional for general scalar hyperbolic conservation laws. Journal of Differential Fountions. 2007, 235,658-667 Optimal < mmi:math alting="si1.gif" overflow="scroll"	1.1	1
102	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	1.1	142
103	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/x Existence and stability of planar diffusion waves for 2-D Euler equations with damping. Journal of Differential Equations, 2007, 242, 40-71.	1.1	18
104	Existence of stationary solutions to the Vlasov–Poisson–Boltzmann system. Journal of Mathematical Analysis and Applications, 2007, 327, 425-434.	0.5	12
105	Optimal Decay Estimates on the Linearized Boltzmann Equation with Time Dependent Force and their Applications. Communications in Mathematical Physics, 2007, 277, 189-236.	1.0	68
106	Existence of strong travelling wave profiles to \$2imes 2\$ systems of viscous conservation laws. Proceedings of the American Mathematical Society, 2007, 135, 1843-1849.	0.4	5
107	Nonlinear stability of boundary layers of the Boltzmann equation for cutoff hard potentials. Journal of Mathematical Physics, 2006, 47, 083301.	0.5	16
108	Stability of contact discontinuity for the Boltzmann equation. Journal of Differential Equations, 2006, 229, 698-742.	1.1	28

#	Article	IF	CITATIONS
109	Singular behavior of vacuum states for compressible fluids. Journal of Computational and Applied Mathematics, 2006, 190, 211-231.	1.1	36
110	An improved convergence rate of Glimm scheme for general systems of hyperbolic conservation laws. Journal of Differential Equations, 2006, 231, 92-107.	1.1	4
111	Multiplicity of stationary solutions to the Euler–Poisson equations. Journal of Differential Equations, 2006, 231, 252-289.	1.1	11
112	Nonlinear Stability of Rarefaction Waves for the Boltzmann Equation. Archive for Rational Mechanics and Analysis, 2006, 181, 333-371.	1.1	60
113	Cauchy Problem for the Vlasov–Poisson–Boltzmann System. Archive for Rational Mechanics and Analysis, 2006, 182, 415-470.	1.1	53
114	Global Existence of Classical Solutions to the Vlasov-Poisson-Boltzmann System. Communications in Mathematical Physics, 2006, 268, 569-605.	1.0	62
115	Convergence Rate to Stationary Solutions for Boltzmann Equation with External Force*. Chinese Annals of Mathematics Series B, 2006, 27, 363-378.	0.2	16
116	THE BOLTZMANN EQUATION IN THE SPACE \$L^2cap L^infty_eta\$: GLOBAL AND TIME-PERIODIC SOLUTIONS. Analysis and Applications, 2006, 04, 263-310.	1.2	58
117	A new energy method for the Boltzmann equation. Journal of Mathematical Physics, 2006, 47, 053301.	0.5	27
118	CONVERGENCE RATE FOR THE COMPRESSIBLE NAVIER–STOKES EQUATIONS WITH EXTERNAL FORCE. Journal of Hyperbolic Differential Equations, 2006, 03, 561-574.	0.3	57
119	Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete and Continuous Dynamical Systems, 2006, 16, 253-277.	0.5	27
120	Local existence with physical vacuum boundary condition to Euler equations with damping. Journal of Differential Equations, 2005, 210, 217-231.	1.1	33
121	A class of self-similar solutions to a singular and degenerate diffusion equation. Nonlinear Analysis: Theory, Methods & Applications, 2005, 60, 775-796.	0.6	0
122	A Half-space Problem for the Boltzmann Equation with Specular Reflection Boundary Condition. Communications in Mathematical Physics, 2005, 255, 683-726.	1.0	29
123	GLOBAL SOLUTIONS TO THE BOLTZMANN EQUATION WITH EXTERNAL FORCES. Analysis and Applications, 2005, 03, 157-193.	1.2	39
124	Global existence to Boltzmann equation with external force in infinite vacuum. Journal of Mathematical Physics, 2005, 46, 053307.	0.5	20
125	BV Estimates on Lax–Friedrichs' Scheme or a Model of Radiating Gas. Applicable Analysis, 2004, 83, 533-539.	0.6	9
126	EXISTENCE OF BOUNDARY LAYER SOLUTIONS TO THE BOLTZMANN EQUATION. Analysis and Applications, 2004, 02, 337-363.	1.2	26

#	Article	IF	CITATIONS
127	Nonlinear Stability of Boundary Layers of the Boltzmann Equation, I. The case M ? 1. Communications in Mathematical Physics, 2004, 244, 99-109.</td <td>1.0</td> <td>29</td>	1.0	29
128	On the convergence rate of vanishing viscosity approximations. Communications on Pure and Applied Mathematics, 2004, 57, 1075-1109.	1.2	36
129	Global structure and asymptotic behavior of weak solutions to flood wave equations. Journal of Differential Equations, 2004, 207, 117-160.	1.1	4
130	Energy method for Boltzmann equation. Physica D: Nonlinear Phenomena, 2004, 188, 178-192.	1.3	176
131	Nonlinear Stability of Strong Rarefaction Waves for Compressible Navier-Stokes Equations. SIAM Journal on Mathematical Analysis, 2004, 35, 1561-1597.	0.9	107
132	A Sharp Decay Estimate for Positive Nonlinear Waves. SIAM Journal on Mathematical Analysis, 2004, 36, 659-677.	0.9	18
133	Nonlinear Boundary Layers of the Boltzmann Equation: I. Existence. Communications in Mathematical Physics, 2003, 236, 373-393.	1.0	70
134	Pointwise estimates and Lp convergence rates to diffusion waves for p-system with damping. Journal of Differential Equations, 2003, 187, 310-336.	1.1	25
135	Compressible Navier–Stokes equations with degenerate viscosity coefficient and vacuum (II). Journal of Differential Equations, 2003, 192, 475-501.	1.1	103
136	Blowup phenomena of solutions to Euler–Poisson equations. Journal of Mathematical Analysis and Applications, 2003, 286, 295-306.	0.5	52
137	A note on "well-posedness theory for hyperbolic conservation laws― Applied Mathematics Letters, 2003, 16, 143-146.	1.5	5
138	L1 Stability for Systems of Hyperbolic Conservation Laws with a Resonant Moving Source. SIAM Journal on Mathematical Analysis, 2003, 34, 1226-1251.	0.9	10
139	Asymptotic Behavior of Global Classical Solutions of Quasilinear Hyperbolic Systems. Communications in Partial Differential Equations, 2003, 28, 1203-1220.	1.0	32
140	Non-existence of global smooth solutions to symmetrizable nonlinear hyperbolic systems. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2003, 133, 719-728.	0.8	3
141	CONVERGENCE RATE OF GLIMM SCHEME FOR GENERAL SYSTEMS OF HYPERBOLIC CONSERVATION LAWS. Taiwanese Journal of Mathematics, 2003, 7, 195.	0.2	6
142	BV estimates of Lax-Friedrichs' scheme for a class of nonlinear hyperbolic conservation laws. Proceedings of the American Mathematical Society, 2002, 131, 1257-1266.	0.4	5
143	A Vacuum Problem for the One-Dimensional Compressible Navier–Stokes Equations with Density-Dependent Viscosity. Journal of Differential Equations, 2002, 184, 163-184.	1.1	116
144	Solutions of Euler-Poisson Equations¶for Gaseous Stars. Archive for Rational Mechanics and Analysis, 2002, 164, 261-285.	1,1	88

#	Article	IF	CITATIONS
145	Compressible Navier–Stokes Equations with Degenerate Viscosity Coefficient and Vacuum. Communications in Mathematical Physics, 2002, 230, 329-363.	1.0	178
146	Weak Solutions of General Systems of Hyperbolic Conservation Laws. Communications in Mathematical Physics, 2002, 230, 289-327.	1.0	26
147	NONLINEAR BOUNDARY LAYERS OF THE BOLTZMANN EQUATION. , 2002, , .		0
148	COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY AND VACUUM. Communications in Partial Differential Equations, 2001, 26, 965-981.	1.0	169
149	Asymptotics of Initial Boundary Value Problems for Hydrodynamic and Drift Diffusion Models for Semiconductors. Journal of Differential Equations, 2001, 170, 472-493.	1.1	39
150	The Pointwise Estimates of Solutions for Euler Equations with Damping in Multi-Dimensions. Journal of Differential Equations, 2001, 173, 410-450.	1.1	157
151	Interaction of Elementary Waves for Compressible Euler Equations with Frictional Damping. Journal of Differential Equations, 2000, 161, 42-86.	1.1	15
152	Global BV Solutions to a p-System with Relaxation. Journal of Differential Equations, 2000, 162, 174-198.	1.1	18
153	Lp-Convergence Rate to Nonlinear Diffusion Waves for p-System with Damping. Journal of Differential Equations, 2000, 161, 191-218.	1.1	116
154	Asymptotic Behavior of Solutions to a Hyperbolic System with Relaxation and Boundary Effect. Journal of Differential Equations, 2000, 163, 348-380.	1.1	15
155	Existence and Non-Existence of Global Smooth Solutions for p-System with Relaxation. Journal of Differential Equations, 2000, 161, 321-336.	1.1	27
156	Existence of global smooth solutions for Euler equations with symmetry (II). Nonlinear Analysis: Theory, Methods & Applications, 2000, 41, 187-203.	0.6	4
157	SOME RECENT RESULTS ON COMPRESSIBLE FLOW WITH VACUUM. Taiwanese Journal of Mathematics, 2000, 4, 33.	0.2	13
158	Interface Behavior of Compressible NavierStokes Equations with Vacuum. SIAM Journal on Mathematical Analysis, 2000, 31, 1175-1191.	0.9	103
159	Compressible flow with vacuum and physical singularity. Methods and Applications of Analysis, 2000, 7, 495-510.	0.1	66
160	\$L_1\$ stability for \$2 imes 2\$ systems of hyperbolic conservation laws. Journal of the American Mathematical Society, 1999, 12, 729-774.	1.9	45
161	Euler equations with spherical symmetry and an outing absorbing boundary. Communications in Partial Differential Equations, 1999, 24, 1-23.	1.0	2
162	L 1 Stability Estimates for n $\tilde{A}-$ n Conservation Laws. Archive for Rational Mechanics and Analysis, 1999, 149, 1-22.	1,1	218

#	Article	IF	Citations
163	Nonlinear stability and existence of stationary discrete travelling waves for the relaxing schemes. Japan Journal of Industrial and Applied Mathematics, 1999, 16, 195-224.	0.5	7
164	The rate of asymptotic convergence of strong detonations for a model problem. Japan Journal of Industrial and Applied Mathematics, 1999, 16, 467-487.	0.5	5
165	Nonlinear Stability of Strong Detonation Waves for a Dissipative Model. Journal of Differential Equations, 1999, 151, 134-160.	1.1	1
166	A new entropy functional for a scalar conservation law. Communications on Pure and Applied Mathematics, 1999, 52, 1427-1442.	1.2	33
167	Well-posedness theory for hyperbolic conservation laws. Communications on Pure and Applied Mathematics, 1999, 52, 1553-1586.	1.2	89
168	Global BV Solutions of Compressible Euler Equations with Spherical Symmetry and Damping. Journal of Differential Equations, 1998, 146, 203-225.	1.1	20
169	Compactness Framework of LpApproximate Solutions for Scalar Conservation Laws. Journal of Mathematical Analysis and Applications, 1998, 220, 164-186.	0.5	64
170	Vacuum states for compressible flow. Discrete and Continuous Dynamical Systems, 1998, 4, 1-32.	0.5	197
171	Global weak solutions for elastic equations with damping and different end states. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1998, 128, 797-807.	0.8	4
172	Convergence rates to travelling waves for a nonconvex relaxation model. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1998, 128, 1053-1068.	0.8	17
173	Global smooth solutions for a class of quasilinear hyperbolic systems with dissipative terms. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1997, 127, 1311-1324.	0.8	16
174	Existence of global weak solutions for a viscoelastic model with relaxation. Applicable Analysis, 1997, 67, 313-326.	0.6	2
175	Decay Rate for Travelling Waves of a Relaxation Model. Journal of Differential Equations, 1997, 134, 343-367.	1.1	19
176	Compressible Euler Equations with Vacuum. Journal of Differential Equations, 1997, 140, 223-237.	1.1	84
177	Existence of Globally Bounded Continuous Solutions for Nonisentropic Gas Dynamics Equations. Journal of Mathematical Analysis and Applications, 1997, 209, 492-506.	0.5	12
178	A Functional Integral Approach to Shock Wave Solutions of the Euler Equations with Spherical Symmetry (II). Journal of Differential Equations, 1996, 130, 162-178.	1.1	8
179	A functional integral approach to shock wave solutions of Euler equations with spherical symmetry. Communications in Mathematical Physics, 1995, 171, 607-638.	1.0	16
180	Convergence of the Viscosity Method for the Systems of Isentropic Gas Dynamics in Lagrangian Coordinates. Journal of Differential Equations, 1993, 102, 330-341.	1.1	3

#	Article	IF	CITATIONS
181	Convergence of The Lax–Friedrichs' Scheme For Equaitons of Isentropic Gas Dynamics in Lagrangian Coordinatesâ^—. Communications in Partial Differential Equations, 1991, 16, 1441-1460.	1.0	1
182	Spectrum structure and decay rate estimates on the Landau equation with Coulomb potential. Science China Mathematics, 0 , 1 .	0.8	0