James C Paton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2302129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathogenesis and Diagnosis of Shiga Toxin-Producing <i>Escherichia coli</i> Infections. Clinical Microbiology Reviews, 1998, 11, 450-479.	5.7	1,261
2	The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nature Reviews Microbiology, 2008, 6, 288-301.	13.6	1,002
3	Streptococcus pneumoniae: transmission, colonization and invasion. Nature Reviews Microbiology, 2018, 16, 355-367.	13.6	636
4	Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1966-1971.	3.3	627
5	Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science, 2014, 345, 98-101.	6.0	465
6	A Molecular Mechanism for Bacterial Susceptibility to Zinc. PLoS Pathogens, 2011, 7, e1002357.	2.1	387
7	AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature, 2006, 443, 548-552.	13.7	351
8	The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16969-16974.	3.3	334
9	A New Family of Potent AB5 Cytotoxins Produced by Shiga Toxigenic Escherichia coli. Journal of Experimental Medicine, 2004, 200, 35-46.	4.2	306
10	Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates ofStreptococcus pneumoniae. Molecular Microbiology, 1998, 27, 73-83.	1.2	303
11	Intranasal Immunization of Mice with a Mixture of the Pneumococcal Proteins PsaA and PspA Is Highly Protective against Nasopharyngeal Carriage of Streptococcus pneumoniae. Infection and Immunity, 2000, 68, 796-800.	1.0	278
12	A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nature Communications, 2014, 5, 5055.	5.8	264
13	Molecular Analysis of The Pathogenicity of Streptococcus Pneumoniae: The Role of Pneumococcal Proteins. Annual Review of Microbiology, 1993, 47, 89-115.	2.9	254
14	Additive Attenuation of Virulence of <i>Streptococcus pneumoniae</i> by Mutation of the Genes Encoding Pneumolysin and Other Putative Pneumococcal Virulence Proteins. Infection and Immunity, 2000, 68, 133-140.	1.0	228
15	Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature, 2008, 456, 648-652.	13.7	217
16	Immunizations with Pneumococcal Surface Protein A and Pneumolysin Are Protective against Pneumonia in a Murine Model of Pulmonary Infection withStreptococcus pneumoniae. Journal of Infectious Diseases, 2003, 188, 339-348.	1.9	215
17	The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure, 1998, 6, 1553-1561.	1.6	213
18	Structure, biological functions and applications of the AB5 toxins. Trends in Biochemical Sciences, 2010, 35, 411-418.	3.7	204

#	Article	IF	CITATIONS
19	A new biological agent for treatment of Shiga toxigenic Escherichia coli infections and dysentery in humans. Nature Medicine, 2000, 6, 265-270.	15.2	196
20	Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Molecular Microbiology, 2002, 35, 1431-1442.	1.2	189
21	Immunization of Mice with Combinations of Pneumococcal Virulence Proteins Elicits Enhanced Protection against Challenge with Streptococcus pneumoniae. Infection and Immunity, 2000, 68, 3028-3033.	1.0	187
22	Pneumococcal Neuraminidases A and B Both Have Essential Roles during Infection of the Respiratory Tract and Sepsis. Infection and Immunity, 2006, 74, 4014-4020.	1.0	168
23	Development of a Vaccine against Invasive Pneumococcal Disease Based on Combinations of Virulence Proteins of Streptococcus pneumoniae. Infection and Immunity, 2007, 75, 350-357.	1.0	168
24	Attachment of capsular polysaccharide to the cell wall of Streptococcus pneumoniae type 2 is required for invasive disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8505-8510.	3.3	139
25	Subtilase cytotoxin activates PERK, IRE1 and ATF6 endoplasmic reticulum stress-signalling pathways. Cellular Microbiology, 2008, 10, 1775-1786.	1.1	138
26	Imperfect coordination chemistry facilitates metal ion release in the Psa permease. Nature Chemical Biology, 2014, 10, 35-41.	3.9	137
27	Virulence of Streptococcus pneumoniae : PsaA Mutants Are Hypersensitive to Oxidative Stress. Infection and Immunity, 2002, 70, 1635-1639.	1.0	136
28	Role of RegM, a Homologue of the Catabolite Repressor Protein CcpA, in the Virulence of Streptococcus pneumoniae. Infection and Immunity, 2002, 70, 5454-5461.	1.0	135
29	Protection against Streptococcus pneumoniae Elicited by Immunization with Pneumolysin and CbpA. Infection and Immunity, 2001, 69, 5997-6003.	1.0	134
30	Extracellular Zinc Competitively Inhibits Manganese Uptake and Compromises Oxidative Stress Management in Streptococcus pneumoniae. PLoS ONE, 2014, 9, e89427.	1.1	127
31	Characterization of the locus encoding the Streptococcus pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Molecular Microbiology, 1997, 23, 751-763.	1.2	126
32	ZnuA and zinc homeostasis in Pseudomonas aeruginosa. Scientific Reports, 2015, 5, 13139.	1.6	126
33	Molecular analysis of the psa permease complex of Streptococcus pneumoniae. Molecular Microbiology, 2004, 53, 889-901.	1.2	125
34	The contribution of pneumolysin to the pathogenicity of Streptococcus pneumoniae. Trends in Microbiology, 1996, 4, 103-106.	3.5	122
35	The Effect That Mutations in the Conserved Capsular Polysaccharide Biosynthesis GenescpsA, cpsB,andcpsDHave on Virulence ofStreptococcus pneumoniae. Journal of Infectious Diseases, 2004, 189, 1905-1913.	1.9	122
36	Comparative efficacy of pneumococcal neuraminidase and pneumolysin as immunogens protective against Streptococcus pneumoniae. Microbial Pathogenesis, 1988, 5, 461-467.	1.3	118

3

#	Article	IF	CITATIONS
37	Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae. Nature Communications, 2015, 6, 6418.	5.8	117
38	CCR2 defines in vivo development and homing of IL-23-driven GM-CSF-producing Th17 cells. Nature Communications, 2015, 6, 8644.	5.8	117
39	The NADH oxidase of Streptococcus pneumoniae : its involvement in competence and virulence. Molecular Microbiology, 1999, 34, 1018-1028.	1.2	116
40	The potential for using protein vaccines to protect against otitis media caused by Streptococcus pneumoniae. Vaccine, 2000, 19, S87-S95.	1.7	116
41	Measurement of antibody responses to pneumolysin-A promising method for the presumptive aetiological diagnosis of pneumococcal pneumonia. Journal of Infection, 1989, 19, 127-134.	1.7	114
42	Differential expression of key pneumococcal virulence genes in vivo. Microbiology (United Kingdom), 2006, 152, 305-311.	0.7	113
43	The Autolytic Enzyme LytA of Streptococcus pneumoniae Is Not Responsible for Releasing Pneumolysin. Journal of Bacteriology, 2001, 183, 3108-3116.	1.0	112
44	Pneumococcal histidine triad proteins are regulated by the Zn ²⁺ â€dependent repressor AdcR and inhibit complement deposition through the recruitment of complement factor H. FASEB Journal, 2009, 23, 731-738.	0.2	111
45	The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5312-20.	3.3	110
46	LuxS Mediates Iron-Dependent Biofilm Formation, Competence, and Fratricide in Streptococcus pneumoniae. Infection and Immunity, 2011, 79, 4550-4558.	1.0	109
47	GRP78 Is an Important Host Factor for Japanese Encephalitis Virus Entry and Replication in Mammalian Cells. Journal of Virology, 2017, 91, .	1.5	109
48	<scp>AdcA</scp> and <scp>AdcAll</scp> employ distinct zinc acquisition mechanisms and contribute additively to zinc homeostasis in <scp><i>S</i></scp> <i>treptococcus pneumoniae</i> . Molecular Microbiology, 2014, 91, 834-851.	1.2	108
49	Streptococcus pneumoniae Uses Glutathione To Defend against Oxidative Stress and Metal Ion Toxicity. Journal of Bacteriology, 2012, 194, 6248-6254.	1.0	101
50	IL-17-producing γδT cells switch migratory patterns between resting and activated states. Nature Communications, 2017, 8, 15632.	5.8	99
51	Central Role of Manganese in Regulation of Stress Responses, Physiology, and Metabolism in <i>Streptococcus pneumoniae</i> . Journal of Bacteriology, 2010, 192, 4489-4497.	1.0	95
52	<i>Streptococcus pneumoniae</i> Capsular Polysaccharide. Microbiology Spectrum, 2019, 7, .	1.2	94
53	Pneumolysin Released during <i>Streptococcus pneumoniae</i> Autolysis Is a Potent Activator of Intracellular Oxygen Radical Production in Neutrophils. Infection and Immunity, 2008, 76, 4079-4087.	1.0	93
54	Recombinant Probiotics for Treatment and Prevention of Enterotoxigenic Escherichia coli Diarrhea. Gastroenterology, 2005, 128, 1219-1228.	0.6	89

#	Article	IF	CITATIONS
55	Designer probiotics for prevention of enteric infections. Nature Reviews Microbiology, 2006, 4, 193-200.	13.6	89
56	Heterogeneity of the amino-acid sequences of Escherichia coli shiga-like toxin type-I operons. Gene, 1995, 153, 71-74.	1.0	88
57	A Recombinant Probiotic for Treatment and Prevention of Cholera. Gastroenterology, 2006, 130, 1688-1695.	0.6	88
58	Mutation of luxS of Streptococcus pneumoniae Affects Virulence in a Mouse Model. Infection and Immunity, 2003, 71, 3206-3212.	1.0	84
59	Pathologic Changes in Mice Induced by Subtilase Cytotoxin, a Potent NewEscherichia coliAB5Toxin That Targets the Endoplasmic Reticulum. Journal of Infectious Diseases, 2007, 196, 1093-1101.	1.9	83
60	The Human Complement Regulator Factor H Binds Pneumococcal Surface Protein PspC via Short Consensus Repeats 13 to 15. Infection and Immunity, 2002, 70, 5604-5611.	1.0	76
61	Streptococcal toxins: role in pathogenesis and disease. Cellular Microbiology, 2015, 17, 1721-1741.	1.1	76
62	Comparative Virulence of Streptococcus pneumoniae Strains with Insertion-Duplication, Point, and Deletion Mutations in the Pneumolysin Gene. Infection and Immunity, 1999, 67, 981-985.	1.0	75
63	Neutralization of Shiga Toxins Stx1, Stx2c, and Stx2e by Recombinant Bacteria Expressing Mimics of Globotriose and Globotetraose. Infection and Immunity, 2001, 69, 1967-1970.	1.0	67
64	Novel pneumococcal surface proteins: role in virulence and vaccine potential. Trends in Microbiology, 1998, 6, 85-87.	3.5	66
65	Chaperone-Mediated Sec61 Channel Gating during ER Import of Small Precursor Proteins Overcomes Sec61 Inhibitor-Reinforced Energy Barrier. Cell Reports, 2018, 23, 1373-1386.	2.9	63
66	<i>Streptococcus pneumoniae</i> Autolysis Prevents Phagocytosis and Production of Phagocyte-Activating Cytokines. Infection and Immunity, 2009, 77, 3826-3837.	1.0	62
67	Extracellular Matrix Formation Enhances the Ability of Streptococcus pneumoniae to Cause Invasive Disease. PLoS ONE, 2011, 6, e19844.	1.1	61
68	Identification of Genes That Contribute to the Pathogenesis of Invasive Pneumococcal Disease by <i>In Vivo</i> Transcriptomic Analysis. Infection and Immunity, 2012, 80, 3268-3278.	1.0	61
69	Pneumococcal Virulence Gene Expression and Host Cytokine Profiles during Pathogenesis of Invasive Disease. Infection and Immunity, 2008, 76, 646-657.	1.0	59
70	Comparative Genetics of Capsular Polysaccharide Biosynthesis in <i>Streptococcus pneumoniae</i> Types Belonging to Serogroup 19. Journal of Bacteriology, 1999, 181, 5355-5364.	1.0	56
71	Zinc stress induces copper depletion in Acinetobacter baumannii. BMC Microbiology, 2017, 17, 59.	1.3	55
72	Chaperone-Targeting Cytotoxin and Endoplasmic Reticulum Stress-Inducing Drug Synergize to Kill Cancer Cells. Neoplasia, 2009, 11, 1165-IN11.	2.3	53

#	Article	IF	CITATIONS
73	Autoinducer 2 Signaling via the Phosphotransferase FruA Drives Galactose Utilization by <i>Streptococcus pneumoniae</i> , Resulting in Hypervirulence. MBio, 2017, 8, .	1.8	50
74	Identification of a novel pneumococcal vaccine antigen preferentially expressed during meningitis in mice. Journal of Clinical Investigation, 2012, 122, 2208-2220.	3.9	50
75	Dietary zinc and the control of Streptococcus pneumoniae infection. PLoS Pathogens, 2019, 15, e1007957.	2.1	49
76	Polyhistidine triad proteins of pathogenic streptococci. Trends in Microbiology, 2012, 20, 485-493.	3.5	47
77	Phosphorylation of IRE1 at S729 regulates RIDD in B cells and antibody production after immunization. Journal of Cell Biology, 2018, 217, 1739-1755.	2.3	46
78	Oral Administration of Formaldehyde-Killed Recombinant Bacteria Expressing a Mimic of the Shiga Toxin Receptor Protects Mice from Fatal Challenge with Shiga-ToxigenicEscherichia coli. Infection and Immunity, 2001, 69, 1389-1393.	1.0	45
79	Multivalent Pneumococcal Protein Vaccines Comprising Pneumolysoid with Epitopes/Fragments of CbpA and/or PspA Elicit Strong and Broad Protection. Vaccine Journal, 2015, 22, 1079-1089.	3.2	45
80	Targeting GRP78 to enhance melanoma cell death. Pigment Cell and Melanoma Research, 2010, 23, 675-682.	1.5	44
81	Bioengineered microbes in disease therapy. Trends in Molecular Medicine, 2012, 18, 417-425.	3.5	44
82	Action of Shiga Toxin Type-2 and Subtilase Cytotoxin on Human Microvascular Endothelial Cells. PLoS ONE, 2013, 8, e70431.	1.1	44
83	A Variable Region within the Genome of Streptococcus pneumoniae Contributes to Strain-Strain Variation in Virulence. PLoS ONE, 2011, 6, e19650.	1.1	43
84	Acquisition and Role of Molybdate in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2014, 80, 6843-6852.	1.4	43
85	Identification of Novel <i>Acinetobacter baumannii</i> Host Fatty Acid Stress Adaptation Strategies. MBio, 2019, 10, .	1.8	43
86	Overlapping Functionality of the Pht Proteins in Zinc Homeostasis of Streptococcus pneumoniae. Infection and Immunity, 2014, 82, 4315-4324.	1.0	42
87	Arachidonic Acid Stress Impacts Pneumococcal Fatty Acid Homeostasis. Frontiers in Microbiology, 2018, 9, 813.	1.5	42
88	Refinement of a Therapeutic Shiga Toxin–Binding Probiotic for Human Trials. Journal of Infectious Diseases, 2004, 189, 1547-1555.	1.9	41
89	The two-component signal transduction system RR06/HK06 regulates expression of cbpA in Streptococcus pneumoniae. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7701-7706.	3.3	41
90	Evaluation of robenidine analog NCL195 as a novel broad-spectrum antibacterial agent. PLoS ONE, 2017, 12, e0183457.	1.1	40

#	Article	IF	CITATIONS
91	Pneumolysin with Low Hemolytic Activity Confers an Early Growth Advantage to Streptococcus pneumoniae in the Blood. Infection and Immunity, 2011, 79, 4122-4130.	1.0	39
92	Intranasal vaccination with γ-irradiated <i>Streptococcus pneumoniae</i> whole-cell vaccine provides serotype-independent protection mediated by B-cells and innate IL-17 responses. Clinical Science, 2016, 130, 697-710.	1.8	39
93	The First Histidine Triad Motif of PhtD Is Critical for Zinc Homeostasis in <i>Streptococcus pneumoniae</i> . Infection and Immunity, 2016, 84, 407-415.	1.0	38
94	Subtilase cytotoxin cleaves newly synthesized BiP and blocks antibody secretion in B lymphocytes. Journal of Experimental Medicine, 2009, 206, 2429-2440.	4.2	36
95	Interplay between Manganese and Iron in Pneumococcal Pathogenesis: Role of the Orphan Response Regulator RitR. Infection and Immunity, 2013, 81, 421-429.	1.0	35
96	The Role of the CopA Copper Efflux System in Acinetobacter baumannii Virulence. International Journal of Molecular Sciences, 2019, 20, 575.	1.8	35
97	Molecular and genetic characterization of the capsule biosynthesis locus of Streptococcus pneumoniae type 23F. Microbiology (United Kingdom), 1999, 145, 781-789.	0.7	33
98	Surface Association of Pht Proteins of Streptococcus pneumoniae. Infection and Immunity, 2013, 81, 3644-3651.	1.0	33
99	The Impact of Pneumolysin on the Macrophage Response to Streptococcus pneumoniae is Strain-Dependent. PLoS ONE, 2014, 9, e103625.	1.1	33
100	Physiological Exploration of the Long Term Evolutionary Selection against Expression of N-Glycolylneuraminic Acid in the Brain. Journal of Biological Chemistry, 2017, 292, 2557-2570.	1.6	33
101	The protein kinase PERK/EIF2AK3 regulates proinsulin processing not via protein synthesis but by controlling endoplasmic reticulum chaperones. Journal of Biological Chemistry, 2018, 293, 5134-5149.	1.6	33
102	Clustering of IRE1α depends on sensing ER stress but not on its RNase activity. FASEB Journal, 2019, 33, 9811-9827.	0.2	33
103	Chaperone-Driven Degradation of a Misfolded Proinsulin Mutant in Parallel With Restoration of Wild-Type Insulin Secretion. Diabetes, 2017, 66, 741-753.	0.3	32
104	A dietary non-human sialic acid may facilitate hemolytic-uremic syndrome. Kidney International, 2009, 76, 140-144.	2.6	31
105	Spermidine Biosynthesis and Transport Modulate Pneumococcal Autolysis. Journal of Bacteriology, 2014, 196, 3556-3561.	1.0	31
106	The effect of gamma-irradiation conditions on the immunogenicity of whole-inactivated Influenza A virus vaccine. Vaccine, 2017, 35, 1071-1079.	1.7	31
107	IRE1β negatively regulates IRE1α signaling in response to endoplasmic reticulum stress. Journal of Cell Biology, 2020, 219, .	2.3	31
108	Protective Immunization of Mice with an Active-Site Mutant of Subtilase Cytotoxin of Shiga Toxin-Producing Escherichia coli. Infection and Immunity, 2005, 73, 4432-4436.	1.0	30

#	Article	IF	CITATIONS
109	Vaccination against Streptococcus pneumoniae Using Truncated Derivatives of Polyhistidine Triad Protein D. PLoS ONE, 2013, 8, e78916.	1.1	30
110	Bioengineered bugs expressing oligosaccharide receptor mimics: Toxin-binding probiotics for treatment and prevention of enteric infections. Bioengineered Bugs, 2010, 1, 172-177.	2.0	29
111	<i>Escherichia coli</i> Subtilase Cytotoxin Induces Apoptosis Regulated by Host Bcl-2 Family Proteins Bax/Bak. Infection and Immunity, 2010, 78, 4691-4696.	1.0	29
112	The signal peptide plus a cluster of positive charges in prion protein dictate chaperone-mediated Sec61 channel gating. Biology Open, 2019, 8, .	0.6	27
113	Contribution of a Genomic Accessory Region Encoding a Putative Cellobiose Phosphotransferase System to Virulence of Streptococcus pneumoniae. PLoS ONE, 2012, 7, e32385.	1.1	27
114	Penicillin tolerance in Streptococcus pneumoniae, autolysis and the Psa ATP-binding cassette (ABC) manganese permease. Molecular Microbiology, 1999, 32, 881-883.	1.2	26
115	Identification of markers that functionally define a quiescent multiple myeloma cell sub-population surviving bortezomib treatment. BMC Cancer, 2015, 15, 444.	1.1	26
116	Contribution of Serotype and Genetic Background to Virulence of Serotype 3 and Serogroup 11 Pneumococcal Isolates. Infection and Immunity, 2011, 79, 4839-4849.	1.0	25
117	Effects of Escherichia Coli Subtilase Cytotoxin and Shiga Toxin 2 on Primary Cultures of Human Renal Tubular Epithelial Cells. PLoS ONE, 2014, 9, e87022.	1.1	25
118	A functional genomics catalogue of activated transcription factors during pathogenesis of pneumococcal disease. BMC Genomics, 2014, 15, 769.	1.2	25
119	In vivo dual RNA-seq reveals that neutrophil recruitment underlies differential tissue tropism of Streptococcus pneumoniae. Communications Biology, 2020, 3, 293.	2.0	22
120	Site of Isolation Determines Biofilm Formation and Virulence Phenotypes of Streptococcus pneumoniae Serotype 3 Clinical Isolates. Infection and Immunity, 2013, 81, 505-513.	1.0	21
121	Direct interaction of whole-inactivated influenza A and pneumococcal vaccines enhances influenza-specific immunity. Nature Microbiology, 2019, 4, 1316-1327.	5.9	21
122	Capacity To Utilize Raffinose Dictates Pneumococcal Disease Phenotype. MBio, 2019, 10, .	1.8	21
123	The Role of Zinc Efflux during Acinetobacter baumannii Infection. ACS Infectious Diseases, 2020, 6, 150-158.	1.8	21
124	The outcome of H. influenzae and S. pneumoniae inter-species interactions depends on pH, nutrient availability and growth phase. International Journal of Medical Microbiology, 2015, 305, 881-892.	1.5	20
125	Enhanced protective responses to a serotype-independent pneumococcal vaccine when combined with an inactivated influenza vaccine. Clinical Science, 2017, 131, 169-180.	1.8	20
126	Cadmium stress dictates central carbon flux and alters membrane composition in Streptococcus pneumoniae. Communications Biology, 2020, 3, 694.	2.0	19

#	Article	IF	CITATIONS
127	To Make or Take: Bacterial Lipid Homeostasis during Infection. MBio, 2021, 12, e0092821.	1.8	19
128	Peptidomimeticâ€based identification of FDAâ€approved compounds inhibiting IRE1 activity. FEBS Journal, 2021, 288, 945-960.	2.2	18
129	Human pleural fluid is a potent growth medium for Streptococcus pneumoniae. PLoS ONE, 2017, 12, e0188833.	1.1	17
130	Structure aided design of a Neu5Gc specific lectin. Scientific Reports, 2017, 7, 1495.	1.6	16
131	The Membrane Composition Defines the Spatial Organization and Function of a Major Acinetobacter baumannii Drug Efflux System. MBio, 2021, 12, e0107021.	1.8	14
132	Enhanced safety and immunogenicity of a pneumococcal surface antigen A mutant whole ell inactivated pneumococcal vaccine. Immunology and Cell Biology, 2019, 97, 726-739.	1.0	12
133	Comparative Characterization of Shiga Toxin Type 2 and Subtilase Cytotoxin Effects on Human Renal Epithelial and Endothelial Cells Grown in Monolayer and Bilayer Conditions. PLoS ONE, 2016, 11, e0158180.	1.1	11
134	Lectin activity of the pneumococcal pilin proteins. Scientific Reports, 2017, 7, 17784.	1.6	11
135	Sterility of gamma-irradiated pathogens: a new mathematical formula to calculate sterilizing doses. Journal of Radiation Research, 2020, 61, 886-894.	0.8	11
136	Stress-induced protein disaggregation in the endoplasmic reticulum catalysed by BiP. Nature Communications, 2022, 13, 2501.	5.8	11
137	Site-Specific Mutations of GalR Affect Galactose Metabolism in Streptococcus pneumoniae. Journal of Bacteriology, 2020, 203, .	1.0	10
138	Development of Primary Invasive Pneumococcal Disease Caused by Serotype 1 Pneumococci Is Driven by Early Increased Type I Interferon Response in the Lung. Infection and Immunity, 2014, 82, 3919-3926.	1.0	9
139	<i>Acinetobacter baumannii</i> Fatty Acid Desaturases Facilitate Survival in Distinct Environments. ACS Infectious Diseases, 2021, 7, 2221-2228.	1.8	9
140	The Molecular Basis of Acinetobacter baumannii Cadmium Toxicity and Resistance. Applied and Environmental Microbiology, 2021, 87, e0171821.	1.4	9
141	Characterizing the conformational dynamics of metal-free PsaA using molecular dynamics simulations and electron paramagnetic resonance spectroscopy. Biophysical Chemistry, 2015, 207, 51-60.	1.5	8
142	Systemic effects of Subtilase cytotoxin produced by Escherichia coli O113:H21. Toxicon, 2017, 127, 49-55.	0.8	8
143	Specific growth conditions induce a Streptococcus pneumoniae non-mucoidal, small colony variant and determine the outcome of its co-culture with Haemophilus influenzae. Pathogens and Disease, 2018, 76, .	0.8	8
144	Specificity and utility of SubB2M, a new N-glycolylneuraminic acid lectin. Biochemical and Biophysical Research Communications, 2018, 500, 765-771.	1.0	8

#	Article	IF	CITATIONS
145	A Trap-Door Mechanism for Zinc Acquisition by <i>Streptococcus pneumoniae</i> AdcA. MBio, 2021, 12,	1.8	8
146	Sickly Sweet – How Sugar Utilization Impacts Pneumococcal Disease Progression. Trends in Microbiology, 2021, 29, 768-771.	3.5	8
147	Pneumococcal Phasevarions Control Multiple Virulence Traits, Including Vaccine Candidate Expression. Microbiology Spectrum, 2022, 10, e0091622.	1.2	8
148	Protection against Shiga-Toxigenic Escherichia coli by Non-Genetically Modified Organism Receptor Mimic Bacterial Ghosts. Infection and Immunity, 2015, 83, 3526-3533.	1.0	7
149	N-glycolylneuraminic acid serum biomarker levels are elevated in breast cancer patients at all stages of disease. BMC Cancer, 2022, 22, 334.	1.1	7
150	Isolation Site Influences Virulence Phenotype of Serotype 14 Streptococcus pneumoniae Strains Belonging to Multilocus Sequence Type 15. Infection and Immunity, 2015, 83, 4781-4790.	1.0	6
151	Vacuolation Activity and Intracellular Trafficking of ArtB, the Binding Subunit of an AB5 Toxin Produced by Salmonella enterica Serovar Typhi. Infection and Immunity, 2017, 85, .	1.0	6
152	Ouabain Protects Human Renal Cells against the Cytotoxic Effects of Shiga Toxin Type 2 and Subtilase Cytotoxin. Toxins, 2017, 9, 226.	1.5	6
153	Streptococcus pneumoniae potently induces cell death in mesothelial cells. PLoS ONE, 2018, 13, e0201530.	1.1	6
154	Protein Vaccines. , 0, , 419-435.		6
155	The Variable Region of Pneumococcal Pathogenicity Island 1 Is Responsible for Unusually High Virulence of a Serotype 1 Isolate. Infection and Immunity, 2016, 84, 822-832.	1.0	5
156	The Pneumococcal Alpha-Glycerophosphate Oxidase Enhances Nasopharyngeal Colonization through Binding to Host Glycoconjugates. EBioMedicine, 2017, 18, 236-243.	2.7	5
157	A single nucleotide polymorphism in an IgA1 protease gene determines <i>Streptococcus pneumoniae</i> adaptation to the middle ear during otitis media. Pathogens and Disease, 2021, 79, .	0.8	5
158	An interdomain helix in IRE1α mediates the conformational change required for the sensor's activation. Journal of Biological Chemistry, 2021, 296, 100781.	1.6	5
159	Receptor-mimic probiotics: potential therapeutics for bacterial toxin-mediated enteric diseases. Expert Review of Gastroenterology and Hepatology, 2010, 4, 253-255.	1.4	4
160	Structural characterisation of the HT3 motif of the polyhistidine triad protein D from Streptococcus pneumoniae. FEBS Letters, 2018, 592, 2341-2350.	1.3	4
161	Vaccine Potential of Pneumococcal Proteins. , 2015, , 59-78.		3
162	Role of Streptococcus pneumoniae OM001 operon in capsular polysaccharide production, virulence and survival in human saliva. PLoS ONE, 2018, 13, e0190402.	1.1	3

#	Article	IF	CITATIONS
163	Streptococcus pneumoniae Strains Isolated From a Single Pediatric Patient Display Distinct Phenotypes. Frontiers in Cellular and Infection Microbiology, 2022, 12, 866259.	1.8	3
164	The Role of luxS in the Middle Ear Streptococcus pneumoniae Isolate 947. Pathogens, 2022, 11, 216.	1.2	2
165	Evicting the Pneumococcus from Its Nasopharyngeal Lodgings. Cell Host and Microbe, 2011, 9, 89-91.	5.1	1
166	Host-to-Host Transmission of the Pneumococcus—New Victims of a Toxic Relationship. Cell Host and Microbe, 2017, 21, 5-6.	5.1	1
167	Stand by to repel boarders. Nature Microbiology, 2019, 4, 8-9.	5.9	1
168	<i>Streptococcus pneumoniae</i> Capsular Polysaccharide. , 0, , 304-315.		0
169	Designer Probiotics and Enteric Cytoprotection. , 2011, , 429-443.		0
170	Regulation of Pneumococcal Surface Proteins and Capsule. , 0, , 190-208.		0
171	Rapid Evolution of Bacterial Exotoxin B Subunits Independent of A subunits: Sialic Acid Binding Preferences Correlate with Host Range and Intrinsic Toxicity. FASEB Journal, 2018, 32, 673.3.	0.2	0