Yueming Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2302096/publications.pdf

Version: 2024-02-01

117453 114278 9,713 65 34 63 h-index citations g-index papers 66 66 66 14010 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano, 2010, 4, 380-386.	7.3	2,946
2	Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Advanced Functional Materials, 2009, 19, 2782-2789.	7.8	1,132
3	Application of graphene-modified electrode for selective detection of dopamine. Electrochemistry Communications, 2009, 11, 889-892.	2.3	1,067
4	Preparation and electrochemical performance for methanol oxidation of $pt/graphene$ nanocomposites. Electrochemistry Communications, 2009, 11, 846-849.	2.3	675
5	Preparation of SnO ₂ -Nanocrystal/Graphene-Nanosheets Composites and Their Lithium Storage Ability. Journal of Physical Chemistry C, 2010, 114, 21770-21774.	1.5	377
6	Ni1-xPtx (x = $0\hat{a}^0.12$) Hollow Spheres as Catalysts for Hydrogen Generation from Ammonia Borane. Inorganic Chemistry, 2007, 46, 788-794.	1.9	350
7	Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Carbon, 2016, 99, 556-563.	5.4	218
8	CuO particles and plates: Synthesis and gas-sensor application. Materials Research Bulletin, 2008, 43, 2380-2385.	2.7	214
9	Na ₃ PSe ₄ : A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity. Advanced Energy Materials, 2015, 5, 1501294.	10.2	207
10	KOH modified graphene nanosheets for supercapacitor electrodes. Journal of Power Sources, 2011, 196, 6003-6006.	4.0	173
11	Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructuresviaself-assembly. Journal of Materials Chemistry, 2010, 20, 900-906.	6.7	167
12	Kinetics of (3-Aminopropyl)triethoxylsilane (APTES) Silanization of Superparamagnetic Iron Oxide Nanoparticles. Langmuir, 2013, 29, 15275-15282.	1.6	166
13	Hydrazine-Linked Convergent Self-Assembly of Sophisticated Concave Polyhedrons of β-Ni(OH) ₂ and NiO from Nanoplate Building Blocks. Journal of the American Chemical Society, 2009, 131, 2959-2964.	6.6	137
14	Ordered Assembly of NiCo ₂ O ₄ Multiple Hierarchical Structures for High-Performance Pseudocapacitors. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11394-11402.	4.0	131
15	Graphene based supercapacitor fabricated by vacuum filtration deposition. Journal of Power Sources, 2012, 206, 476-482.	4.0	118
16	N-doped TiO ₂ nanotubes/N-doped graphene nanosheets composites as high performance anode materials in lithium-ion battery. Journal of Materials Chemistry A, 2014, 2, 15473.	5.2	113
17	Strong reduced graphene oxide–polymer composites: hydrogels and wires. RSC Advances, 2012, 2, 6988.	1.7	98
18	Highly efficient electrocatalytic hydrogen production by nickel promoted molybdenum sulfide microspheres catalysts. RSC Advances, 2013, 3, 21231.	1.7	91

#	Article	IF	CITATIONS
19	N-doped carbon coated NiCo2S4 hollow nanotube as bifunctional electrocatalyst for overall water splitting. Carbon, 2019, 145, 521-528.	5.4	83
20	Carbon-Coated Macroporous Sn ₂ P ₂ O ₇ as Anode Materials for Li-Ion Battery. Journal of Physical Chemistry C, 2008, 112, 14216-14219.	1.5	62
21	Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor. Materials Chemistry and Physics, 2014, 148, 380-386.	2.0	62
22	Preparation of reduced graphite oxide with high volumetric capacitance in supercapacitors. Chemical Communications, 2015, 51, 5598-5601.	2.2	57
23	Regulating Polymerization in Graphitic Carbon Nitride To Improve Photocatalytic Activity. Chemistry of Materials, 2019, 31, 9188-9199.	3.2	57
24	Constructing a novel strategy for carbon-doped TiO ₂ multiple-phase nanocomposites toward superior electrochemical performance for lithium ion batteries and the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 7055-7063.	5.2	54
25	Durian shell-derived N, O, P-doped activated porous carbon materials and their electrochemical performance in supercapacitor. Journal of Materials Science, 2020, 55, 10142-10154.	1.7	53
26	N-doped ordered mesoporous carbon as a high performance anode material in sodium ion batteries at room temperature. RSC Advances, 2014, 4, 62673-62677.	1.7	50
27	Plasma boosted N, P, O co-doped carbon microspheres for high performance Zn ion hybrid supercapacitors. Journal of Alloys and Compounds, 2022, 901, 163588.	2.8	50
28	A review on novel activation strategy on carbonaceous materials with special morphology/texture for electrochemical storage. Journal of Energy Chemistry, 2021, 60, 572-590.	7.1	49
29	Synthesis, characterization and electrochemical properties of aluminum-substituted alpha-Ni(OH)2 hollow spheres. Journal of Alloys and Compounds, 2008, 456, 339-343.	2.8	47
30	DFT study of hydrogen production from formic acid decomposition on Pd-Au alloy nanoclusters. Applied Surface Science, 2017, 426, 194-205.	3.1	46
31	High performance binderless TiO2 nanowire arrays electrode for lithium-ion battery. Applied Physics Letters, 2009, 95, 113102.	1.5	40
32	Multiple phase N-doped TiO2 nanotubes/TiN/graphene nanocomposites for high rate lithium ion batteries at low temperature. Journal of Power Sources, 2019, 423, 166-173.	4.0	40
33	Gd doped single-crystalline Li4Ti5O12/TiO2 nanosheets composites as superior anode material in lithium ion batteries. Electrochimica Acta, 2015, 182, 368-375.	2.6	37
34	KOH activated carbon/graphene nanosheets composites as high performance electrode materials in supercapacitors. RSC Advances, 2014, 4, 48758-48764.	1.7	36
35	A novel all solid-state asymmetric supercapacitor with superior electrochemical performance in a wide temperature range using a hydroquinone modified graphene xerogel as the cathode and N-doped Ti ₃ C ₂ T _x as the anode. Journal of Materials Chemistry A, 2020, 8, 1687-1696.	5. 2	36
36	Coupling effects of Zn single atom and high curvature supports for improved performance of CO2 reduction. Science Bulletin, 2021, 66, 1649-1649.	4.3	36

#	Article	IF	CITATIONS
37	Facile treatment of wastewater produced in Hummer's method to prepare Mn3O4 nanoparticles and study their electrochemical performance in an asymmetric supercapacitor. RSC Advances, 2013, 3, 2398.	1.7	35
38	Harvesting vapor by hygroscopic acid to create pore: Morphology, crystallinity and performance of poly (ether ether ketone) lithium ion battery separator. Journal of Membrane Science, 2019, 577, 1-11.	4.1	35
39	Dual Doping: An Effective Method to Enhance the Electrochemical Properties of Li ₁₀ GeP ₂ S ₁₂ â€Based Solid Electrolytes. Journal of the American Ceramic Society, 2015, 98, 3831-3835.	1.9	33
40	The excellent capacitive capability for N,P-doped carbon microsphere/reduced graphene oxide nanocomposites in H2SO4/KI redox electrolyte. Journal of Materials Science, 2019, 54, 7665-7678.	1.7	32
41	The optimized LiBF4 based electrolytes for TiO2(B) anode in lithium ion batteries with an excellent low temperature performance. Journal of Power Sources, 2020, 453, 227908.	4.0	30
42	Fabrication of free-standing N-doped carbon/TiO2 hierarchical nanofiber films and their application in lithium and sodium storages. Journal of Alloys and Compounds, 2017, 701, 372-379.	2.8	29
43	Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries. Nanomaterials, 2017, 7, 150.	1.9	29
44	Ammonia-free preparation of Ag@SiO 2 core/shell nanoparticles. Applied Surface Science, 2015, 345, 122-126.	3.1	27
45	Direct electrochemistry of hemoglobin immobilized in CuO nanowire bundles. Talanta, 2010, 83, 162-166.	2.9	26
46	Preparation of W-doped hierarchical porous Li4Ti5O12/brookite nanocomposites for high rate lithium ion batteries at \hat{a} 20 \hat{A} °C. Journal of Power Sources, 2019, 437, 226890.	4.0	25
47	MOF-derived, CeO x -modified CoP/carbon composites for oxygen evolution and hydrogen evolution reactions. Journal of Materials Science, 2018, 53, 12123-12131.	1.7	20
48	Enhancing the low-temperature performance in lithium ion batteries of Nb2O5 by combination of W doping and MXene addition. Journal of Power Sources, 2021, 515, 230601.	4.0	18
49	N-doped TiO2 Nanotubes as an Effective Additive to Improve the Catalytic Capability of Methanol Oxidation for Pt/Graphene Nanocomposites. Nanomaterials, 2016, 6, 40.	1.9	17
50	A novel strategy for preparing layered double hydroxide/exfoliated carbon nanostructures composites as superior electrochemical catalysts with respect to oxygen evolution and methanol oxidation. Journal of Alloys and Compounds, 2018, 744, 347-356.	2.8	13
51	Evidence of high temperature stable performance of polyether ether ketone (PEEK) separator with sponge-structured in lithium-ion battery. Journal of Materials Science, 2022, 57, 7042-7055.	1.7	11
52	Preparation of hierarchical porous graphene nanosheets with high specific surface area and their electrochemical behaviors in supercapacitors. Materials Chemistry and Physics, 2016, 177, 171-178.	2.0	10
53	Interconnected Porous Poly(ether imide) Separator for Thermally Stable Sodium Ion Battery. ACS Applied Energy Materials, 2021, 4, 11080-11089.	2.5	9
54	Preparation of ternary phase Li4Ti5O12/anatase/rutile nanocomposites with defects and their enhanced capability for lithium ion storage. Journal of Alloys and Compounds, 2018, 769, 463-470.	2.8	8

#	Article	IF	CITATIONS
55	Effect of different reduction methods on electrochemical cycling stability of reduced graphene oxide in supercapacitors. Journal of Applied Electrochemistry, 2015, 45, 57-65.	1.5	7
56	Low temperature synthesis of NiO/Co3O4 composite nanosheets as high performance Li-ion battery anode materials. Science Bulletin, 2012, 57, 4195-4198.	1.7	6
57	ZnO nanoparticles embedded in graphene xerogel as anode materials in Zn/Ni batteries with superior electrochemical performances. Ionics, 2020, 26, 5597-5605.	1.2	5
58	Solid Electrolytes: Na3PSe4: A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity (Adv. Energy Mater. 24/2015). Advanced Energy Materials, 2015, 5, .	10.2	3
59	Simulation of Moltenâ€Glass Evolution from Spout Lip to Tin Bath. International Journal of Applied Glass Science, 2016, 7, 492-502.	1.0	3
60	Exfoliated MoS 2 nanosheets promoted PtCu/graphene nanocomposites with superior electrocatalytic activity toward methanol oxidation. Materials Letters, 2017, 198, 148-151.	1.3	3
61	Cole-pollen derived hierarchical porous carbon/graphene composites boosted by Zn and N doping for highly efficient oxygen reduction reaction. Journal of Porous Materials, 2022, 29, 1177-1189.	1.3	2
62	Facile Synthesis of Magnesiated α-MoO3 and Its Electrochemical Performance in Li-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2012, 12, 2839-2843.	0.9	1
63	N, P-codoped Mesoporous Carbon Supported PtCox Nanoparticles and Their Superior Electrochemical toward Methanol Oxidation. IOP Conference Series: Earth and Environmental Science, 2018, 128, 012164.	0.2	1
64	Carbon Nano-Onions Embedded CuO Nanosheets: An Excellent Stable Anode Material for Lithium Ion Battery. IOP Conference Series: Materials Science and Engineering, 2019, 484, 012005.	0.3	0
65	Simulation of the effect of spout lip installation location on molten glass evolution in the tin bath entry end. Glass Technology: European Journal of Glass Science and Technology Part A, 2017, 58, 137-144.	0.2	0