Kristen A Engevik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2301968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. IScience, 2022, 25, 104158.	4.1	41
2	Rotavirus infection elicits host responses and amplifies viral replication via P2Y1 purinergic signaling. FASEB Journal, 2022, 36, .	0.5	0
3	Intermicrovillar adhesion complex assembly requires Myosin 5b. FASEB Journal, 2022, 36, .	0.5	0
4	Mucin-Degrading Microbes Release Monosaccharides That Chemoattract <i>Clostridioides difficile</i> and Facilitate Colonization of the Human Intestinal Mucus Layer. ACS Infectious Diseases, 2021, 7, 1126-1142.	3.8	39
5	<i>Bifidobacterium dentium</i> -derived y-glutamylcysteine suppresses ER-mediated goblet cell stress and reduces TNBS-driven colonic inflammation. Gut Microbes, 2021, 13, 1-21.	9.8	41
6	Immunomodulation of dendritic cells by <i>Lactobacillus reuteri</i> surface components and metabolites. Physiological Reports, 2021, 9, e14719.	1.7	37
7	Partners in Infectious Disease: When Microbes Facilitate Enteric Viral Infections. Gastroenterology Insights, 2021, 12, 41-55.	1.2	1
8	Bacteroides ovatus Promotes IL-22 Production and Reduces Trinitrobenzene Sulfonic Acid–Driven Colonic Inflammation. American Journal of Pathology, 2021, 191, 704-719.	3.8	39
9	<i>Fusobacterium nucleatum</i> Secretes Outer Membrane Vesicles and Promotes Intestinal Inflammation. MBio, 2021, 12, .	4.1	101
10	The metabolic profile of Bifidobacterium dentium reflects its status as a human gut commensal. BMC Microbiology, 2021, 21, 154.	3.3	13
11	Clostridioides difficile is Chemoattracted to Oligosaccharides Released by Mucin―Degrading Microbes. FASEB Journal, 2021, 35, .	0.5	0
12	Bacteroides ovatus Influences the Levels of Intestinal Neurotransmitters in a Gnotobiotic Model. FASEB Journal, 2021, 35, .	0.5	0
13	Exploring the interaction between rotavirus and <i>Lactobacillus</i> . FASEB Journal, 2021, 35, .	0.5	0
14	Development of a highâ€ŧhroughput method for examining bacterial supernatant pH using ratiometric UVâ€VIS spectrophotometry. FASEB Journal, 2021, 35, .	0.5	0
15	Neurotransmitter Profiles Are Altered in the Gut and Brain of Mice Mono-Associated with Bifidobacterium dentium. Biomolecules, 2021, 11, 1091.	4.0	17
16	Deficient Active Transport Activity in Healing Mucosa After Mild Gastric Epithelial Damage. Digestive Diseases and Sciences, 2020, 65, 119-131.	2.3	14
17	Extracting Insights From Temporal Data by Integrating Dynamic Modeling and Machine Learning. Frontiers in Physiology, 2020, 11, 1012.	2.8	5
18	Rotavirus induces intercellular calcium waves through ADP signaling. Science, 2020, 370, .	12.6	44

Kristen A Engevik

#	Article	IF	CITATIONS
19	Enhancing responsiveness of human jejunal enteroids to host and microbial stimuli. Journal of Physiology, 2020, 598, 3085-3105.	2.9	17
20	Rotavirus infection induces glycan availability to promote ileum-specific changes in the microbiome aiding rotavirus virulence. Gut Microbes, 2020, 11, 1324-1347.	9.8	43
21	Multiple calcium sources are required for intracellular calcium mobilization during gastric organoid epithelial repair. Physiological Reports, 2020, 8, e14384.	1.7	9
22	Human intestinal enteroids as a model of <i>Clostridioides difficile</i> -induced enteritis. American Journal of Physiology - Renal Physiology, 2020, 318, G870-G888.	3.4	23
23	Elucidating the Role of Purinergic and Calcium Signaling During Rotavirus Infection. FASEB Journal, 2020, 34, 1-1.	0.5	0
24	1142 MICROBIAL DEGRADATION OF ILEAL MUCUS PROMOTES ROTAVIRUS INFECTION. Gastroenterology, 2020, 158, S-226-S-227.	1.3	0
25	Dysregulation of Endogenous and Paracrine Calcium Signaling Pathways by Rotaviruses and Caliciviruses. FASEB Journal, 2020, 34, 1-1.	0.5	0
26	Helicobacter pylori Uses the TlpB Receptor To Sense Sites of Gastric Injury. Infection and Immunity, 2019, 87, .	2.2	22
27	Microbial Metabolic Capacity for Intestinal Folate Production and Modulation of Host Folate Receptors. Frontiers in Microbiology, 2019, 10, 2305.	3.5	95
28	Trefoil factor 2 activation of CXCR4 requires calcium mobilization to drive epithelial repair in gastric organoids. Journal of Physiology, 2019, 597, 2673-2690.	2.9	23
29	Effect of Helicobacter pylori chemotaxis on gastric epithelial repair. FASEB Journal, 2019, 33, 869.19.	0.5	0
30	During Ca 2+ â€dependent gastric epithelial repair, Ca 2+ is sourced from both Ca 2+ uptake and intracellular Ca 2+ release. FASEB Journal, 2019, 33, 869.18.	0.5	0
31	Organoids as a Model to Study Infectious Disease. Methods in Molecular Biology, 2018, 1734, 71-81.	0.9	18
32	Cell injury triggers actin polymerization initiating epithelial restitution. Journal of Cell Science, 2018, 131, .	2.0	20
33	807 - TFF2 Drives Calcium Mobilization and Epithelial Repair in Gastric Organoids. Gastroenterology, 2018, 154, S-165-S-166.	1.3	0
34	Effect of EGFR on Calcium Mobilization and Epithelial Repair in Gastric Organoids. FASEB Journal, 2018, 32, 612.3.	0.5	0
35	Trefoil Factor Peptides and Gastrointestinal Function. Annual Review of Physiology, 2017, 79, 357-380.	13.1	130
36	Mo1670 Role for Differences in TLR Expression in the Clearance of Clostridium difficile Infections. Gastroenterology, 2016, 150, S748.	1.3	0

3

Kristen A Engevik

#	Article	IF	CITATIONS
37	Epithelial Regeneration After Gastric Ulceration Causes Prolonged Cell-Type Alterations. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 625-647.	4.5	41
38	The Development of Spasmolytic Polypeptide/TFF2-Expressing Metaplasia (SPEM) During Gastric Repair Is Absent in the Aged Stomach. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 605-624.	4.5	79
39	Human <i>Clostridium difficile</i> infection: inhibition of NHE3 and microbiota profile. American Journal of Physiology - Renal Physiology, 2015, 308, G497-G509.	3.4	84
40	Human <i>Clostridium difficile</i> infection: altered mucus production and composition. American Journal of Physiology - Renal Physiology, 2015, 308, G510-G524.	3.4	105
41	Transplantation of Gastric Organoidâ€Derived Spasmolytic Polypeptide/TFF2â€Expressing Metaplasia (SPEM) Cell Lineage Promotes Ulcer Repair in the Aged Stomach. FASEB Journal, 2015, 29, 849.4.	0.5	1