
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/230194/publications.pdf Version: 2024-02-01

λλεινμει μ

#	Article	IF	CITATIONS
1	A benzo[ghi]-perylene triimide based double-cable conjugated polymer for single-component organic solar cells. Chinese Chemical Letters, 2022, 33, 466-469.	9.0	23
2	Insulating Polymers as Additives to Bulkâ€Heterojunction Organic Solar Cells: The Effect of Miscibility. ChemPhysChem, 2022, 23, .	2.1	20
3	Ultrathin Flexible Transparent Composite Electrode via Semi-embedding Silver Nanowires in a Colorless Polyimide for High-Performance Ultraflexible Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 5699-5708.	8.0	32
4	Enhancing the Performance of Small-Molecule Organic Solar Cells via Fused-Ring Design. ACS Applied Materials & Interfaces, 2022, 14, 7093-7101.	8.0	13
5	Highâ€Performance Indoor Organic Solar Cells Based on a Doubleâ€Cable Conjugated Polymer. Solar Rrl, 2022, 6, .	5.8	12
6	Epitaxial (110)-oriented La _{0.7} Sr _{0.3} MnO ₃ film directly on flexible mica substrate. Journal Physics D: Applied Physics, 2022, 55, 224002.	2.8	6
7	Double-Cable Conjugated Polymers with Rigid Phenyl Linkers for Single-Component Organic Solar Cells. Macromolecules, 2022, 55, 2517-2523.	4.8	11
8	Functional Ligand-Decorated ZnO Nanoparticles as Cathode Interlayers for Efficient Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 1291-1297.	5.1	14
9	Miscibility-Controlled Mechanical and Photovoltaic Properties in Double-Cable Conjugated Polymer/Insulating Polymer Composites. Macromolecules, 2022, 55, 322-330.	4.8	16
10	Naphthobistriazole based non-fused electron acceptors for organic solar cells. Journal of Materials Chemistry C, 2022, 10, 8070-8076.	5.5	7
11	Highly stable photomultiplication-type organic photodetectors with single polymers containing intramolecular traps as the active layer. Journal of Materials Chemistry C, 2022, 10, 7822-7830.	5.5	47
12	Impact of pendent naphthalenedimide content in random double-cable conjugated polymers on their microstructures and photovoltaic performance. Polymer, 2022, 253, 125020.	3.8	2
13	Length Effect of Alkyl Linkers on the Crystalline Transition in Naphthalene Diimide-Based Double-Cable Conjugated Polymers. Macromolecules, 2022, 55, 5188-5196.	4.8	7
14	Mechanical-robust and recyclable polyimide substrates coordinated with cyclic Ti-oxo cluster for flexible organic solar cells. Npj Flexible Electronics, 2022, 6, .	10.7	17
15	Revisiting Conjugated Polymers with Long-Branched Alkyl Chains: High Molecular Weight, Excellent Mechanical Properties, and Low Voltage Losses. Macromolecules, 2022, 55, 5964-5974.	4.8	13
16	Simple Sn-based coordination complex as cathode interlayer for efficient organic solar cells. Organic Electronics, 2022, 108, 106577.	2.6	1
17	Highly sensitive all-polymer photodetectors with ultraviolet-visible to near-infrared photo-detection and their application as an optical switch. Journal of Materials Chemistry C, 2021, 9, 5349-5355.	5.5	45
18	High performance, electroforming-free, thin film memristors using ionic Na _{0.5} Bi _{0.5} TiO ₃ . Journal of Materials Chemistry C, 2021, 9, 4522-4531.	5.5	10

#	Article	IF	CITATIONS
19	Mushroom Poisoning Outbreaks — China, 2010–2020. China CDC Weekly, 2021, 3, 518-522.	2.3	33
20	Effects of alkyl side chains of double-cable conjugated polymers on the photovoltaic performance of single-component organic solar cells. Journal of Materials Chemistry C, 2021, 9, 16240-16246.	5.5	6
21	Zinc oxide nanoparticles as electron transporting interlayer in organic solar cells. Journal of Materials Chemistry C, 2021, 9, 14093-14114.	5.5	33
22	Creating Ferromagnetic Insulating La _{0.9} Ba _{0.1} MnO ₃ Thin Films by Tuning Lateral Coherence Length. ACS Applied Materials & Interfaces, 2021, 13, 8863-8870.	8.0	3
23	Double-Cable Conjugated Polymers with Pendant Rylene Diimides for Single-Component Organic Solar Cells. Accounts of Chemical Research, 2021, 54, 2227-2237.	15.6	67
24	Benzothiadiazole-Based Double-Cable Conjugated Polymers for Single-Component Organic Solar Cells with Efficiency over 4%. ACS Applied Polymer Materials, 2021, 3, 4645-4650.	4.4	12
25	Application of Whole-Genome Sequencing in the National Molecular Tracing Network for Foodborne Disease Surveillance in China. Foodborne Pathogens and Disease, 2021, 18, 538-546.	1.8	15
26	Mechanical Robust Flexible Single omponent Organic Solar Cells. Small Methods, 2021, 5, e2100481.	8.6	33
27	High-Temperature and Flexible Piezoelectric Sensors for Lamb-Wave-Based Structural Health Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 47764-47772.	8.0	17
28	Characteristics of Settings and Etiologic Agents of Foodborne Disease Outbreaks — China, 2020. China CDC Weekly, 2021, 3, 889-893.	2.3	20
29	Ultrafast Structure and Vibrational Dynamics of a Cyano-Containing Non-Fullerene Acceptor for Organic Solar Cells Revealed by Two-Dimensional Infrared Spectroscopy. Journal of Physical Chemistry B, 2021, 125, 11987-11995.	2.6	2
30	Nearâ€Infrared Nonfullerene Acceptors Based on 4 <i>H</i> â€Cyclopenta[1,2â€ <i>b</i> :5,4â€ <i>b</i> â€2]dithiophene for Organic Solar Cells and Organic Field‣ffect Transistors. Chemistry - an Asian Journal, 2021, 16, 4171-4178.	3.3	9
31	Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nature Communications, 2021, 12, 6679.	12.8	56
32	Incorporating semiflexible linkers into double-cable conjugated polymers <i>via</i> a click reaction. Polymer Chemistry, 2021, 12, 6865-6872.	3.9	3
33	Ternary organic solar cells based on polymer donor, polymer acceptor and PCBM components. Chinese Chemical Letters, 2020, 31, 865-868.	9.0	38
34	Recent progress of thin-film photovoltaics for indoor application. Chinese Chemical Letters, 2020, 31, 643-653.	9.0	106
35	Interface Engineered Room‶emperature Ferromagnetic Insulating State in Ultrathin Manganite Films. Advanced Science, 2020, 7, 1901606.	11.2	24
36	End Group Engineering on the Side Chains of Conjugated Polymers toward Efficient Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 6151-6158.	8.0	16

#	Article	IF	CITATIONS
37	Defects in complex oxide thin films for electronics and energy applications: challenges and opportunities. Materials Horizons, 2020, 7, 2832-2859.	12.2	83
38	Lateral Photodetectors Based on Double-Cable Polymer/Two-Dimensional Perovskite Heterojunction. ACS Applied Materials & Interfaces, 2020, 12, 8826-8834.	8.0	27
39	Colloidal Synthesis and Optical Properties of Perovskite-Inspired Cesium Zirconium Halide Nanocrystals. , 2020, 2, 1644-1652.		69
40	Thieno[3,4- <i>c</i>]pyrrole-4,6-dione-based conjugated polymers for organic solar cells. Chemical Communications, 2020, 56, 10394-10408.	4.1	23
41	Atomicâ€Scale Control of Electronic Structure and Ferromagnetic Insulating State in Perovskite Oxide Superlattices by Longâ€Range Tuning of BO ₆ Octahedra. Advanced Functional Materials, 2020, 30, 2001984.	14.9	12
42	A Naphthalenediimide-Based Polymer Acceptor with Multidirectional Orientations via Double-Cable Design. Macromolecules, 2020, 53, 9279-9286.	4.8	2
43	Excited-state photophysical processes in a molecular system containing perylene bisimide and zinc porphyrin chromophores. Physical Chemistry Chemical Physics, 2020, 22, 20891-20900.	2.8	5
44	Origin of unexpected lattice expansion and ferromagnetism in epitaxial EuTiO3–δ thin films. Ceramics International, 2020, 46, 19990-19995.	4.8	9
45	Negative-pressure enhanced ferroelectricity and piezoelectricity in lead-free BaTiO ₃ ferroelectric nanocomposite films. Journal of Materials Chemistry C, 2020, 8, 8091-8097.	5.5	11
46	Surveillance of foodborne disease outbreaks in China, 2003–2017. Food Control, 2020, 118, 107359.	5.5	100
47	Rapid Vapor-Phase Deposition of High-Mobility <i>p</i> -Type Buffer Layers on Perovskite Photovoltaics for Efficient Semitransparent Devices. ACS Energy Letters, 2020, 5, 2456-2465.	17.4	32
48	Perovskite Transparent Conducting Oxide for the Design of a Transparent, Flexible, and Self-Powered Perovskite Photodetector. ACS Applied Materials & Interfaces, 2020, 12, 16462-16468.	8.0	52
49	Single-crystal field-effect transistors based on a fused-ring electron acceptor with high ambipolar mobilities. Journal of Materials Chemistry C, 2020, 8, 5370-5374.	5.5	57
50	Electronic Structure and Optoelectronic Properties of Bismuth Oxyiodide Robust against Percentâ€Level Iodineâ€, Oxygenâ€, and Bismuthâ€Related Surface Defects. Advanced Functional Materials, 2020, 30, 1909983.	14.9	40
51	Non-fullerene organic solar cells based on a BODIPY-polymer as electron donor with high photocurrent. Journal of Materials Chemistry C, 2020, 8, 2232-2237.	5.5	23
52	Vertical Strain-Driven Antiferromagnetic to Ferromagnetic Phase Transition in EuTiO ₃ Nanocomposite Thin Films. ACS Applied Materials & Interfaces, 2020, 12, 8513-8521.	8.0	14
53	A selenophene substituted double-cable conjugated polymer enables efficient single-component organic solar cells. Journal of Materials Chemistry C, 2020, 8, 2790-2797.	5.5	29
54	Fabrication and Interfacial Electronic Structure of Wide Bandgap NiO and Ga ₂ O ₃ p–n Heterojunction. ACS Applied Electronic Materials, 2020, 2, 456-463.	4.3	66

#	Article	IF	CITATIONS
55	Increased activity in the oxygen evolution reaction by Fe ⁴⁺ -induced hole states in perovskite La _{1â^²x} Sr _x FeO ₃ . Journal of Materials Chemistry A, 2020, 8, 4407-4415.	10.3	78
56	Achieving ferromagnetic insulating properties in La _{0.9} Ba _{0.1} MnO ₃ thin films through nanoengineering. Nanoscale, 2020, 12, 9255-9265.	5.6	12
57	Controllable conduction and hidden phase transitions revealed via vertical strain. Applied Physics Letters, 2019, 114, 252901.	3.3	5
58	Realizing lamellar nanophase separation in a double-cable conjugated polymer <i>via</i> a solvent annealing process. Polymer Chemistry, 2019, 10, 4584-4592.	3.9	22
59	Tuning critical phase transition in VO2 via interfacial control of normal and shear strain. Applied Physics Letters, 2019, 115, .	3.3	7
60	Small Band gap Boron Dipyrromethene-Based Conjugated Polymers for All-Polymer Solar Cells: The Effect of Methyl Units. Macromolecules, 2019, 52, 8367-8373.	4.8	18
61	Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency. Journal of Materials Chemistry A, 2019, 7, 3552-3557.	10.3	58
62	Conjugated molecular dyads with diketopyrrolopyrrole-based conjugated backbones for single-component organic solar cells. Materials Chemistry Frontiers, 2019, 3, 1565-1573.	5.9	21
63	Improving Electron Transport in a Double-Cable Conjugated Polymer via Parallel Perylenetriimide Design. Macromolecules, 2019, 52, 3689-3696.	4.8	32
64	Benzodithiopheneâ€Fused Perylene Bisimides as Electron Acceptors for Nonâ€Fullerene Organic Solar Cells with High Openâ€Circuit Voltage. ChemPhysChem, 2019, 20, 2696-2701.	2.1	5
65	Improving the Acidic Stability of Zeolitic Imidazolate Frameworks by Biofunctional Molecules. CheM, 2019, 5, 1597-1608.	11.7	148
66	Identifying and Reducing Interfacial Losses to Enhance Color-Pure Electroluminescence in Blue-Emitting Perovskite Nanoplatelet Light-Emitting Diodes. ACS Energy Letters, 2019, 4, 1181-1188.	17.4	115
67	Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nature Communications, 2019, 10, 1340.	12.8	100
68	Diketopyrrolopyrrole-based conjugated materials for non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 10174-10199.	10.3	111
69	Optical and electrical properties of (111)-oriented epitaxial SrVO3 thin films. Ceramics International, 2019, 45, 11304-11308.	4.8	7
70	A diketopyrrolopyrrole-based macrocyclic conjugated molecule for organic electronics. Journal of Materials Chemistry C, 2019, 7, 3802-3810.	5.5	21
71	Boosting the Performance of Non-Fullerene Organic Solar Cells via Cross-Linked Donor Polymers Design. Macromolecules, 2019, 52, 2214-2221.	4.8	26
72	An Fe stabilized metallic phase of NiS ₂ for the highly efficient oxygen evolution reaction. Nanoscale, 2019, 11, 23217-23225.	5.6	66

#	Article	IF	CITATIONS
73	Sentinel Listeriosis Surveillance in Selected Hospitals, China, 2013–2017. Emerging Infectious Diseases, 2019, 25, 2274-2277.	4.3	26
74	Tuning the Electronic Structure of NiO via Li Doping for the Fast Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 419-428.	6.7	78
75	Simple non-fullerene electron acceptors with unfused core for organic solar cells. Chinese Chemical Letters, 2019, 30, 222-224.	9.0	31
76	Bottom-up Formation of Carbon-Based Structures with Multilevel Hierarchy from MOF–Guest Polyhedra. Journal of the American Chemical Society, 2018, 140, 6130-6136.	13.7	87
77	Use of Mesoscopic Host Matrix to Induce Ferrimagnetism in Antiferromagnetic Spinel Oxide. Advanced Functional Materials, 2018, 28, 1706220.	14.9	10
78	National molecular tracing network for foodborne disease surveillance in China. Food Control, 2018, 88, 28-32.	5.5	25
79	Trends of foodborne diseases in China: lessons from laboratory-based surveillance since 2011. Frontiers of Medicine, 2018, 12, 48-57.	3.4	115
80	Small bandgap porphyrin-based polymer acceptors for non-fullerene organic solar cells. Journal of Materials Chemistry C, 2018, 6, 717-721.	5.5	22
81	Oxygen-vacancy-mediated dielectric property in perovskite Eu0.5Ba0.5TiO3-δepitaxial thin films. Applied Physics Letters, 2018, 112, .	3.3	16
82	Multifunctional Diketopyrrolopyrroleâ€Based Conjugated Polymers with Perylene Bisimide Side Chains. Macromolecular Rapid Communications, 2018, 39, e1700611.	3.9	24
83	Highly Efficient Synthesis of a Ladderâ€Type BNâ€Heteroacene and Polyheteroacene. Asian Journal of Organic Chemistry, 2018, 7, 465-470.	2.7	8
84	All-Oxide Nanocomposites to Yield Large, Tunable Perpendicular Exchange Bias above Room Temperature. ACS Applied Materials & Interfaces, 2018, 10, 42593-42602.	8.0	16
85	Origin of Improved Photoelectrochemical Water Splitting in Mixed Perovskite Oxides. Advanced Energy Materials, 2018, 8, 1801972.	19.5	22
86	Bilayer–Ternary Polymer Solar Cells Fabricated Using Spontaneous Spreading on Water. Advanced Energy Materials, 2018, 8, 1802197.	19.5	26
87	A Simple, Smallâ€Bandgap Porphyrinâ€Based Conjugated Polymer for Application in Organic Electronics. Macromolecular Rapid Communications, 2018, 39, e1800546.	3.9	7
88	The Impact of Device Polarity on the Performance of Polymer–Fullerene Solar Cells. Advanced Energy Materials, 2018, 8, 1800550.	19.5	25
89	Fundamental Carrier Lifetime Exceeding 1 µs in Cs ₂ AgBiBr ₆ Double Perovskite. Advanced Materials Interfaces, 2018, 5, 1800464.	3.7	173
90	The Epidemiology of <i>Listeria monocytogenes</i> in China. Foodborne Pathogens and Disease, 2018, 15, 459-466.	1.8	75

#	Article	IF	CITATIONS
91	Relating open-circuit voltage losses to the active layer morphology and contact selectivity in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 12574-12581.	10.3	65
92	An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 2694-2698.	13.8	232
93	An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells. Angewandte Chemie, 2017, 129, 2738-2742.	2.0	28
94	Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor. Physical Chemistry Chemical Physics, 2017, 19, 8069-8075.	2.8	31
95	Rücktitelbild: An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells (Angew. Chem. 10/2017). Angewandte Chemie, 2017, 129, 2850-2850.	2.0	0
96	Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Materials Chemistry Frontiers, 2017, 1, 1389-1395.	5.9	173
97	Efficient Top-Illuminated Organic-Quantum Dots Hybrid Tandem Solar Cells with Complementary Absorption. ACS Photonics, 2017, 4, 1172-1177.	6.6	17
98	Enhancing the performance of non-fullerene solar cells with polymer acceptors containing large-sized aromatic units. Organic Electronics, 2017, 47, 133-138.	2.6	14
99	Conjugated polymer acceptors based on fused perylene bisimides with a twisted backbone for non-fullerene solar cells. Polymer Chemistry, 2017, 8, 3300-3306.	3.9	45
100	Diketopyrrolopyrroleâ€Porphyrin Based Conjugated Polymers for Ambipolar Fieldâ€Effect Transistors. Chemistry - an Asian Journal, 2017, 12, 1861-1864.	3.3	11
101	Insulating-to-conducting behavior and band profile across the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>La</mml:mi> <mml:mi epitaxial interface. Physical Review B, 2017, 96. Manipulating multiple order parameters via oxygen vacancies: The case of <mml:math< td=""><td>°09¥22 < mm</td><td>ll:mn>0.9</td></mml:math<></mml:mi </mml:msub></mml:mrow></mml:math 	°09¥22 < mm	ll:mn>0.9
102	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow > < mml:mi mathvariant="normal">E < mml:msub> < mml:mi mathvariant="normal">u < mml:mrow > < mml:mn>0.5 < /mml:mn> < /mml:mrow > < mml:mi mathvariant="normal">B < mml:msub> < mml:mi	3.2	15
103	mathvariant="normal">a <mml:mrow><mml:mn>0.5</mml:mn></mml:mrow> T Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells. Physical Chemistry Chemical Physics, 2017, 19, 23990-23998.	ī2.8	i> <mml:msu 29</mml:msu
104	Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains for Single-Component Organic Solar Cells. Chemistry of Materials, 2017, 29, 7073-7077.	6.7	93
105	"Double-Cable―Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 18647-18656.	13.7	119
106	Electronic Structure and Band Alignment at the NiO and SrTiO ₃ p–n Heterojunctions. ACS Applied Materials & Interfaces, 2017, 9, 26549-26555.	8.0	65
107	Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Fieldâ€Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent. Advanced Materials, 2016, 28, 943-950.	21.0	155
108	All polymer solar cells with diketopyrrolopyrrole-polymers as electron donor and a naphthalenediimide-polymer as electron acceptor. RSC Advances, 2016, 6, 35677-35683.	3.6	22

#	Article	IF	CITATIONS
109	A systematical investigation of non-fullerene solar cells based on diketopyrrolopyrrole polymers as electron donor. Organic Electronics, 2016, 35, 112-117.	2.6	16
110	Perfluoroalkyl-substituted conjugated polymers as electron acceptors for all-polymer solar cells: the effect of diiodoperfluoroalkane additives. Journal of Materials Chemistry A, 2016, 4, 7736-7745.	10.3	31
111	Effect of Fluorination on Molecular Orientation of Conjugated Polymers in High Performance Field-Effect Transistors. Macromolecules, 2016, 49, 6431-6438.	4.8	71
112	Enhancing the photovoltaic performance of binary acceptor-based conjugated polymers incorporating methyl units. RSC Advances, 2016, 6, 98071-98079.	3.6	5
113	Effect of Alkyl Side Chains of Conjugated Polymer Donors on the Device Performance of Non-Fullerene Solar Cells. Macromolecules, 2016, 49, 6445-6454.	4.8	76
114	Methylated conjugated polymers based on diketopyrrolopyrrole and dithienothiophene for high performance field-effect transistors. Organic Electronics, 2016, 37, 366-370.	2.6	21
115	Diketopyrrolopyrrole Polymers with Thienyl and Thiazolyl Linkers for Application in Field-Effect Transistors and Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30328-30335.	8.0	26
116	Highly Efficient Hybrid Polymer and Amorphous Silicon Multijunction Solar Cells with Effective Optical Management. Advanced Materials, 2016, 28, 2170-2177.	21.0	36
117	All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units. Journal of Materials Chemistry A, 2016, 4, 6056-6063.	10.3	49
118	Conjugated polymer with ternary electronâ€deficient units for ambipolar nanowire fieldâ€effect transistors. Journal of Polymer Science Part A, 2016, 54, 34-38.	2.3	19
119	Double-side responsive polymer near-infrared photodetectors with transfer-printed electrode. Journal of Materials Chemistry C, 2016, 4, 1414-1419.	5.5	43
120	Diketopyrrolopyrrole Polymers for Organic Solar Cells. Accounts of Chemical Research, 2016, 49, 78-85.	15.6	435
121	Vertical Interface Induced Dielectric Relaxation in Nanocomposite (BaTiO3)1-x:(Sm2O3)x Thin Films. Scientific Reports, 2015, 5, 11335.	3.3	21
122	Manipulating redox reaction during pulsed laser deposition. Journal of Applied Physics, 2015, 118, .	2.5	5
123	High Performance Polymer Nanowire Fieldâ€Effect Transistors with Distinct Molecular Orientations. Advanced Materials, 2015, 27, 4963-4968.	21.0	79
124	Pyridine-bridged diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells. Polymer Chemistry, 2015, 6, 4775-4783.	3.9	34
125	High Quantum Efficiencies in Polymer Solar Cells at Energy Losses below 0.6 eV. Journal of the American Chemical Society, 2015, 137, 2231-2234.	13.7	365
126	A real-time study of the benefits of co-solvents in polymer solar cell processing. Nature Communications, 2015, 6, 6229.	12.8	287

#	Article	IF	CITATIONS
127	A regioregular terpolymer comprising two electron-deficient and one electron-rich unit for ultra small band gap solar cells. Chemical Communications, 2015, 51, 4290-4293.	4.1	48
128	Polymer–polymer solar cells with a near-infrared spectral response. Journal of Materials Chemistry A, 2015, 3, 6756-6760.	10.3	41
129	Conjugated polymers with deep LUMO levels for field-effect transistors and polymer–polymer solar cells. Journal of Materials Chemistry C, 2015, 3, 8255-8261.	5.5	23
130	Performance Enhancement of Polymer Solar Cells by Using Two Polymer Donors with Complementary Absorption Spectra. Macromolecular Rapid Communications, 2015, 36, 1348-1353.	3.9	12
131	Photoelectrochemical water splitting in an organic artificial leaf. Journal of Materials Chemistry A, 2015, 3, 23936-23945.	10.3	61
132	Polymer Solar Cells: Solubility Controls Fiber Network Formation. Journal of the American Chemical Society, 2015, 137, 11783-11794.	13.7	133
133	Nanostructure manipulation and its influence on functionalities in self-assembled oxide thin films. Journal of Applied Physics, 2014, 116, 183904.	2.5	4
134	Manipulating leakage behavior via distribution of interfaces in oxide thin films. Applied Physics Letters, 2014, 105, 072907.	3.3	15
135	Strain dependent ultrafast carrier dynamics in EuTiO3 films. Applied Physics Letters, 2014, 105, .	3.3	12
136	Charge transfer state energy in ternary bulk-heterojunction polymer–fullerene solar cells. Journal of Photonics for Energy, 2014, 5, 057203.	1.3	30
137	Superheated high-temperature size-exclusion chromatography with chloroform as the mobile phase for ï€-conjugated polymers. Polymer Chemistry, 2014, 5, 558-561.	3.9	8
138	Polymer Solar Cells with Diketopyrrolopyrrole Conjugated Polymers as the Electron Donor and Electron Acceptor. Advanced Materials, 2014, 26, 3304-3309.	21.0	245
139	Wide band gap diketopyrrolopyrrole-based conjugated polymers incorporating biphenyl units applied in polymer solar cells. Chemical Communications, 2014, 50, 679-681.	4.1	70
140	5,6-Difluorobenzothiadiazole and silafluorene based conjugated polymers for organic photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 5116-5123.	5.5	27
141	Contactless charge carrier mobility measurement in organic field-effect transistors. Organic Electronics, 2014, 15, 2855-2861.	2.6	2
142	Vertical-Interface-Manipulated Conduction Behavior in Nanocomposite Oxide Thin Films. ACS Applied Materials & Interfaces, 2014, 6, 5356-5361.	8.0	43
143	Small-Bandgap Semiconducting Polymers with High Near-Infrared Photoresponse. Journal of the American Chemical Society, 2014, 136, 12130-12136.	13.7	259
144	Homocoupling Defects in Diketopyrrolopyrrole-Based Copolymers and Their Effect on Photovoltaic Performance. Journal of the American Chemical Society, 2014, 136, 11128-11133.	13.7	174

#	Article	IF	CITATIONS
145	Precise Tuning of (YBa ₂ Cu ₃ O _{7â€Î}) _{1â€x} :(BaZrO ₃) _x Thin Film Nanocomposite Structures. Advanced Functional Materials, 2014, 24, 5240-5245.	14.9	49
146	Effect of the Fibrillar Microstructure on the Efficiency of High Molecular Weight Diketopyrrolopyrroleâ€Based Polymer Solar Cells. Advanced Materials, 2014, 26, 1565-1570.	21.0	207
147	Oxygen-Vacancy-Induced Antiferromagnetism to Ferromagnetism Transformation in Eu0.5Ba0.5TiO3â~δ Multiferroic Thin Films. Scientific Reports, 2013, 3, 2618.	3.3	42
148	Effect of structure on the solubility and photovoltaic properties of bis-diketopyrrolopyrrole molecules. Journal of Materials Chemistry A, 2013, 1, 15150.	10.3	35
149	Universal Correlation between Fibril Width and Quantum Efficiency in Diketopyrrolopyrrole-Based Polymer Solar Cells. Journal of the American Chemical Society, 2013, 135, 18942-18948.	13.7	305
150	Synthesis of thiophene-containing conjugated polymers from 2,5-thiophenebis(boronic ester)s by Suzuki polycondensation. Polymer Chemistry, 2013, 4, 895.	3.9	18
151	Ethynyleneâ€containing donor–acceptor alternating conjugated polymers: Synthesis and photovoltaic properties. Journal of Polymer Science Part A, 2013, 51, 383-393.	2.3	16
152	Conjugated polymers with 2,7-linked 3,6-difluorocarbazole as donor unit for high efficiency polymer solar cells. Polymer Chemistry, 2013, 4, 2773.	3.9	31
153	Efficient Small Bandgap Polymer Solar Cells with High Fill Factors for 300 nm Thick Films. Advanced Materials, 2013, 25, 3182-3186.	21.0	295
154	Efficient Tandem and Triple-Junction Polymer Solar Cells. Journal of the American Chemical Society, 2013, 135, 5529-5532.	13.7	498
155	Band Gap Control in Diketopyrrolopyrroleâ€Based Polymer Solar Cells Using Electron Donating Side Chains. Advanced Energy Materials, 2013, 3, 674-679.	19.5	33
156	Self-assembly of carboxylated polythiophene nanowires for improved bulk heterojunction morphology in polymer solar cells. Journal of Materials Chemistry, 2012, 22, 11354.	6.7	28
157	Enhancing the Photocurrent in Diketopyrrolopyrrole-Based Polymer Solar Cells via Energy Level Control. Journal of the American Chemical Society, 2012, 134, 13787-13795.	13.7	258
158	Dibenzothiophene-Based Planar Conjugated Polymers for High Efficiency Polymer Solar Cells. Macromolecules, 2012, 45, 7843-7854.	4.8	45
159	9-Alkylidene-9 <i>H</i> -Fluorene-Containing Polymer for High-Efficiency Polymer Solar Cells. Macromolecules, 2011, 44, 7617-7624.	4.8	99
160	The Effect of additive on performance and shelf-stability of HSX-1/PCBM photovoltaic devices. Organic Electronics, 2011, 12, 1544-1551.	2.6	58
161	Polythiophenes with Carbazole Side Chains: Design, Synthesis and Their Application in Organic Solar Cells. Macromolecular Chemistry and Physics, 2010, 211, 948-955.	2.2	13
162	Tailoring side chains of low band gap polymers for high efficiency polymer solar cells. Polymer, 2010, 51, 3031-3038.	3.8	90

#	Article	IF	CITATIONS
163	Conjugated polymers with broad absorption: Synthesis and application in polymer solar cells. Journal of Polymer Science Part A, 2010, 48, 2571-2578.	2.3	46
164	New Methanofullerenes Containing Amide as Electron Acceptor for Construction Photovoltaic Devices. Journal of Physical Chemistry C, 2009, 113, 21970-21975.	3.1	35
165	Tailoring Nanowire Network Morphology and Charge Carrier Mobility of Poly(3-hexylthiophene)/C ₆₀ Films. Journal of Physical Chemistry C, 2009, 113, 11385-11389.	3.1	17
166	A Planar Copolymer for High Efficiency Polymer Solar Cells. Journal of the American Chemical Society, 2009, 131, 14612-14613.	13.7	407
167	Benzothiadiazole-Based Linear and Star Molecules: Design, Synthesis, and Their Application in Bulk Heterojunction Organic Solar Cells. Chemistry of Materials, 2009, 21, 5327-5334.	6.7	137
168	Tris[tri(2â€thienyl)phosphine]palladium as the catalyst precursor for thiopheneâ€based Suzukiâ€Miyaura crosscoupling and polycondensation. Journal of Polymer Science Part A, 2008, 46, 4556-4563.	2.3	29
169	Porphyrinâ^'Dithienothiophene Ï€-Conjugated Copolymers: Synthesis and Their Applications in Field-Effect Transistors and Solar Cells. Macromolecules, 2008, 41, 6895-6902.	4.8	144
170	Thermo-induced formation of physical "cross-linking points―of PNIPAM-g-PEO in semidilute aqueous solutions. Journal of Colloid and Interface Science, 2006, 298, 991-995.	9.4	28
171	Fowler-Nordheim tunneling in -Ga2O3/SrRuO3 Schottky interfaces. Journal Physics D: Applied Physics, 0, , .	2.8	0