List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/230194/publications.pdf Version: 2024-02-01

WEINELL

#	Article	lF	CITATIONS
1	Efficient Tandem and Triple-Junction Polymer Solar Cells. Journal of the American Chemical Society, 2013, 135, 5529-5532.	13.7	498
2	Diketopyrrolopyrrole Polymers for Organic Solar Cells. Accounts of Chemical Research, 2016, 49, 78-85.	15.6	435
3	A Planar Copolymer for High Efficiency Polymer Solar Cells. Journal of the American Chemical Society, 2009, 131, 14612-14613.	13.7	407
4	High Quantum Efficiencies in Polymer Solar Cells at Energy Losses below 0.6 eV. Journal of the American Chemical Society, 2015, 137, 2231-2234.	13.7	365
5	Universal Correlation between Fibril Width and Quantum Efficiency in Diketopyrrolopyrrole-Based Polymer Solar Cells. Journal of the American Chemical Society, 2013, 135, 18942-18948.	13.7	305
6	Efficient Small Bandgap Polymer Solar Cells with High Fill Factors for 300 nm Thick Films. Advanced Materials, 2013, 25, 3182-3186.	21.0	295
7	A real-time study of the benefits of co-solvents in polymer solar cell processing. Nature Communications, 2015, 6, 6229.	12.8	287
8	Small-Bandgap Semiconducting Polymers with High Near-Infrared Photoresponse. Journal of the American Chemical Society, 2014, 136, 12130-12136.	13.7	259
9	Enhancing the Photocurrent in Diketopyrrolopyrrole-Based Polymer Solar Cells via Energy Level Control. Journal of the American Chemical Society, 2012, 134, 13787-13795.	13.7	258
10	Polymer Solar Cells with Diketopyrrolopyrrole Conjugated Polymers as the Electron Donor and Electron Acceptor. Advanced Materials, 2014, 26, 3304-3309.	21.0	245
11	An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 2694-2698.	13.8	232
12	Effect of the Fibrillar Microstructure on the Efficiency of High Molecular Weight Diketopyrrolopyrroleâ€Based Polymer Solar Cells. Advanced Materials, 2014, 26, 1565-1570.	21.0	207
13	Homocoupling Defects in Diketopyrrolopyrrole-Based Copolymers and Their Effect on Photovoltaic Performance. Journal of the American Chemical Society, 2014, 136, 11128-11133.	13.7	174
14	Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Materials Chemistry Frontiers, 2017, 1, 1389-1395.	5.9	173
15	Fundamental Carrier Lifetime Exceeding 1 µs in Cs ₂ AgBiBr ₆ Double Perovskite. Advanced Materials Interfaces, 2018, 5, 1800464.	3.7	173
16	Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Fieldâ€Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent. Advanced Materials, 2016, 28, 943-950.	21.0	155
17	Improving the Acidic Stability of Zeolitic Imidazolate Frameworks by Biofunctional Molecules. CheM, 2019, 5, 1597-1608.	11.7	148
18	Porphyrinâ^'Dithienothiophene Ï€-Conjugated Copolymers: Synthesis and Their Applications in Field-Effect Transistors and Solar Cells. Macromolecules, 2008, 41, 6895-6902.	4.8	144

#	Article	IF	CITATIONS
19	Benzothiadiazole-Based Linear and Star Molecules: Design, Synthesis, and Their Application in Bulk Heterojunction Organic Solar Cells. Chemistry of Materials, 2009, 21, 5327-5334.	6.7	137
20	Polymer Solar Cells: Solubility Controls Fiber Network Formation. Journal of the American Chemical Society, 2015, 137, 11783-11794.	13.7	133
21	"Double-Cable―Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 18647-18656.	13.7	119
22	Trends of foodborne diseases in China: lessons from laboratory-based surveillance since 2011. Frontiers of Medicine, 2018, 12, 48-57.	3.4	115
23	Identifying and Reducing Interfacial Losses to Enhance Color-Pure Electroluminescence in Blue-Emitting Perovskite Nanoplatelet Light-Emitting Diodes. ACS Energy Letters, 2019, 4, 1181-1188.	17.4	115
24	Diketopyrrolopyrrole-based conjugated materials for non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 10174-10199.	10.3	111
25	Recent progress of thin-film photovoltaics for indoor application. Chinese Chemical Letters, 2020, 31, 643-653.	9.0	106
26	Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nature Communications, 2019, 10, 1340.	12.8	100
27	Surveillance of foodborne disease outbreaks in China, 2003–2017. Food Control, 2020, 118, 107359.	5.5	100
28	9-Alkylidene-9 <i>H</i> -Fluorene-Containing Polymer for High-Efficiency Polymer Solar Cells. Macromolecules, 2011, 44, 7617-7624.	4.8	99
29	Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains for Single-Component Organic Solar Cells. Chemistry of Materials, 2017, 29, 7073-7077.	6.7	93
30	Tailoring side chains of low band gap polymers for high efficiency polymer solar cells. Polymer, 2010, 51, 3031-3038.	3.8	90
31	Bottom-up Formation of Carbon-Based Structures with Multilevel Hierarchy from MOF–Guest Polyhedra. Journal of the American Chemical Society, 2018, 140, 6130-6136.	13.7	87
32	Defects in complex oxide thin films for electronics and energy applications: challenges and opportunities. Materials Horizons, 2020, 7, 2832-2859.	12.2	83
33	High Performance Polymer Nanowire Fieldâ€Effect Transistors with Distinct Molecular Orientations. Advanced Materials, 2015, 27, 4963-4968.	21.0	79
34	Tuning the Electronic Structure of NiO via Li Doping for the Fast Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 419-428.	6.7	78
35	Increased activity in the oxygen evolution reaction by Fe ⁴⁺ -induced hole states in perovskite La _{1â^'x} Sr _x FeO ₃ . Journal of Materials Chemistry A, 2020, 8, 4407-4415.	10.3	78
36	Effect of Alkyl Side Chains of Conjugated Polymer Donors on the Device Performance of Non-Fullerene Solar Cells. Macromolecules, 2016, 49, 6445-6454.	4.8	76

#	Article	IF	CITATIONS
37	The Epidemiology of <i>Listeria monocytogenes</i> in China. Foodborne Pathogens and Disease, 2018, 15, 459-466.	1.8	75
38	Effect of Fluorination on Molecular Orientation of Conjugated Polymers in High Performance Field-Effect Transistors. Macromolecules, 2016, 49, 6431-6438.	4.8	71
39	Wide band gap diketopyrrolopyrrole-based conjugated polymers incorporating biphenyl units applied in polymer solar cells. Chemical Communications, 2014, 50, 679-681.	4.1	70
40	Colloidal Synthesis and Optical Properties of Perovskite-Inspired Cesium Zirconium Halide Nanocrystals. , 2020, 2, 1644-1652.		69
41	Double-Cable Conjugated Polymers with Pendant Rylene Diimides for Single-Component Organic Solar Cells. Accounts of Chemical Research, 2021, 54, 2227-2237.	15.6	67
42	An Fe stabilized metallic phase of NiS ₂ for the highly efficient oxygen evolution reaction. Nanoscale, 2019, 11, 23217-23225.	5.6	66
43	Fabrication and Interfacial Electronic Structure of Wide Bandgap NiO and Ga ₂ O ₃ p–n Heterojunction. ACS Applied Electronic Materials, 2020, 2, 456-463.	4.3	66
44	Electronic Structure and Band Alignment at the NiO and SrTiO ₃ p–n Heterojunctions. ACS Applied Materials & Interfaces, 2017, 9, 26549-26555.	8.0	65
45	Relating open-circuit voltage losses to the active layer morphology and contact selectivity in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 12574-12581.	10.3	65
46	Photoelectrochemical water splitting in an organic artificial leaf. Journal of Materials Chemistry A, 2015, 3, 23936-23945.	10.3	61
47	The Effect of additive on performance and shelf-stability of HSX-1/PCBM photovoltaic devices. Organic Electronics, 2011, 12, 1544-1551.	2.6	58
48	Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency. Journal of Materials Chemistry A, 2019, 7, 3552-3557.	10.3	58
49	Single-crystal field-effect transistors based on a fused-ring electron acceptor with high ambipolar mobilities. Journal of Materials Chemistry C, 2020, 8, 5370-5374.	5.5	57
50	Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nature Communications, 2021, 12, 6679.	12.8	56
51	Perovskite Transparent Conducting Oxide for the Design of a Transparent, Flexible, and Self-Powered Perovskite Photodetector. ACS Applied Materials & Interfaces, 2020, 12, 16462-16468.	8.0	52
52	Precise Tuning of (YBa ₂ Cu ₃ O _{7â€Î}) _{1â€x} :(BaZrO ₃) _x Thin Film Nanocomposite Structures. Advanced Functional Materials, 2014, 24, 5240-5245.	14.9	49
53	All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units. Journal of Materials Chemistry A, 2016, 4, 6056-6063.	10.3	49
54	A regioregular terpolymer comprising two electron-deficient and one electron-rich unit for ultra small band gap solar cells. Chemical Communications, 2015, 51, 4290-4293.	4.1	48

#	Article	IF	CITATIONS
55	Highly stable photomultiplication-type organic photodetectors with single polymers containing intramolecular traps as the active layer. Journal of Materials Chemistry C, 2022, 10, 7822-7830.	5.5	47
56	Conjugated polymers with broad absorption: Synthesis and application in polymer solar cells. Journal of Polymer Science Part A, 2010, 48, 2571-2578.	2.3	46
57	Dibenzothiophene-Based Planar Conjugated Polymers for High Efficiency Polymer Solar Cells. Macromolecules, 2012, 45, 7843-7854.	4.8	45
58	Conjugated polymer acceptors based on fused perylene bisimides with a twisted backbone for non-fullerene solar cells. Polymer Chemistry, 2017, 8, 3300-3306.	3.9	45
59	Highly sensitive all-polymer photodetectors with ultraviolet-visible to near-infrared photo-detection and their application as an optical switch. Journal of Materials Chemistry C, 2021, 9, 5349-5355.	5.5	45
60	Vertical-Interface-Manipulated Conduction Behavior in Nanocomposite Oxide Thin Films. ACS Applied Materials & Interfaces, 2014, 6, 5356-5361.	8.0	43
61	Double-side responsive polymer near-infrared photodetectors with transfer-printed electrode. Journal of Materials Chemistry C, 2016, 4, 1414-1419.	5.5	43
62	Oxygen-Vacancy-Induced Antiferromagnetism to Ferromagnetism Transformation in Eu0.5Ba0.5TiO3â^´î´ Multiferroic Thin Films. Scientific Reports, 2013, 3, 2618.	3.3	42
63	Polymer–polymer solar cells with a near-infrared spectral response. Journal of Materials Chemistry A, 2015, 3, 6756-6760.	10.3	41
64	Electronic Structure and Optoelectronic Properties of Bismuth Oxyiodide Robust against Percentâ€Level Iodineâ€; Oxygenâ€; and Bismuthâ€Related Surface Defects. Advanced Functional Materials, 2020, 30, 1909983.	14.9	40
65	Ternary organic solar cells based on polymer donor, polymer acceptor and PCBM components. Chinese Chemical Letters, 2020, 31, 865-868.	9.0	38
66	Highly Efficient Hybrid Polymer and Amorphous Silicon Multijunction Solar Cells with Effective Optical Management. Advanced Materials, 2016, 28, 2170-2177.	21.0	36
67	New Methanofullerenes Containing Amide as Electron Acceptor for Construction Photovoltaic Devices. Journal of Physical Chemistry C, 2009, 113, 21970-21975.	3.1	35
68	Effect of structure on the solubility and photovoltaic properties of bis-diketopyrrolopyrrole molecules. Journal of Materials Chemistry A, 2013, 1, 15150.	10.3	35
69	Pyridine-bridged diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells. Polymer Chemistry, 2015, 6, 4775-4783.	3.9	34
70	Band Gap Control in Diketopyrrolopyrroleâ€Based Polymer Solar Cells Using Electron Donating Side Chains. Advanced Energy Materials, 2013, 3, 674-679.	19.5	33
71	Mushroom Poisoning Outbreaks — China, 2010–2020. China CDC Weekly, 2021, 3, 518-522.	2.3	33
72	Zinc oxide nanoparticles as electron transporting interlayer in organic solar cells. Journal of Materials Chemistry C, 2021, 9, 14093-14114.	5.5	33

#	Article	IF	CITATIONS
73	Mechanical Robust Flexible Singleâ€Component Organic Solar Cells. Small Methods, 2021, 5, e2100481.	8.6	33
74	Improving Electron Transport in a Double-Cable Conjugated Polymer via Parallel Perylenetriimide Design. Macromolecules, 2019, 52, 3689-3696.	4.8	32
75	Rapid Vapor-Phase Deposition of High-Mobility <i>p</i> -Type Buffer Layers on Perovskite Photovoltaics for Efficient Semitransparent Devices. ACS Energy Letters, 2020, 5, 2456-2465.	17.4	32
76	Ultrathin Flexible Transparent Composite Electrode via Semi-embedding Silver Nanowires in a Colorless Polyimide for High-Performance Ultraflexible Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 5699-5708.	8.0	32
77	Conjugated polymers with 2,7-linked 3,6-difluorocarbazole as donor unit for high efficiency polymer solar cells. Polymer Chemistry, 2013, 4, 2773.	3.9	31
78	Perfluoroalkyl-substituted conjugated polymers as electron acceptors for all-polymer solar cells: the effect of diiodoperfluoroalkane additives. Journal of Materials Chemistry A, 2016, 4, 7736-7745.	10.3	31
79	Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor. Physical Chemistry Chemical Physics, 2017, 19, 8069-8075.	2.8	31
80	Simple non-fullerene electron acceptors with unfused core for organic solar cells. Chinese Chemical Letters, 2019, 30, 222-224.	9.0	31
81	Charge transfer state energy in ternary bulk-heterojunction polymer–fullerene solar cells. Journal of Photonics for Energy, 2014, 5, 057203.	1.3	30
82	Tris[tri(2â€ŧhienyl)phosphine]palladium as the catalyst precursor for thiopheneâ€based Suzukiâ€Miyaura crosscoupling and polycondensation. Journal of Polymer Science Part A, 2008, 46, 4556-4563.	2.3	29
83	Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells. Physical Chemistry Chemical Physics, 2017, 19, 23990-23998.	2.8	29
84	A selenophene substituted double-cable conjugated polymer enables efficient single-component organic solar cells. Journal of Materials Chemistry C, 2020, 8, 2790-2797.	5.5	29
85	Thermo-induced formation of physical "cross-linking points―of PNIPAM-g-PEO in semidilute aqueous solutions. Journal of Colloid and Interface Science, 2006, 298, 991-995.	9.4	28
86	Self-assembly of carboxylated polythiophene nanowires for improved bulk heterojunction morphology in polymer solar cells. Journal of Materials Chemistry, 2012, 22, 11354.	6.7	28
87	An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells. Angewandte Chemie, 2017, 129, 2738-2742.	2.0	28
88	5,6-Difluorobenzothiadiazole and silafluorene based conjugated polymers for organic photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 5116-5123.	5.5	27
89	Lateral Photodetectors Based on Double-Cable Polymer/Two-Dimensional Perovskite Heterojunction. ACS Applied Materials & Interfaces, 2020, 12, 8826-8834.	8.0	27
90	Diketopyrrolopyrrole Polymers with Thienyl and Thiazolyl Linkers for Application in Field-Effect Transistors and Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30328-30335.	8.0	26

#	Article	IF	CITATIONS
91	Bilayer–Ternary Polymer Solar Cells Fabricated Using Spontaneous Spreading on Water. Advanced Energy Materials, 2018, 8, 1802197.	19.5	26
92	Boosting the Performance of Non-Fullerene Organic Solar Cells via Cross-Linked Donor Polymers Design. Macromolecules, 2019, 52, 2214-2221.	4.8	26
93	Sentinel Listeriosis Surveillance in Selected Hospitals, China, 2013–2017. Emerging Infectious Diseases, 2019, 25, 2274-2277.	4.3	26
94	National molecular tracing network for foodborne disease surveillance in China. Food Control, 2018, 88, 28-32.	5.5	25
95	The Impact of Device Polarity on the Performance of Polymer–Fullerene Solar Cells. Advanced Energy Materials, 2018, 8, 1800550.	19.5	25
96	Multifunctional Diketopyrrolopyrroleâ€Based Conjugated Polymers with Perylene Bisimide Side Chains. Macromolecular Rapid Communications, 2018, 39, e1700611.	3.9	24
97	Interface Engineered Roomâ€Temperature Ferromagnetic Insulating State in Ultrathin Manganite Films. Advanced Science, 2020, 7, 1901606.	11.2	24
98	Conjugated polymers with deep LUMO levels for field-effect transistors and polymer–polymer solar cells. Journal of Materials Chemistry C, 2015, 3, 8255-8261.	5.5	23
99	Thieno[3,4- <i>c</i>]pyrrole-4,6-dione-based conjugated polymers for organic solar cells. Chemical Communications, 2020, 56, 10394-10408.	4.1	23
100	Non-fullerene organic solar cells based on a BODIPY-polymer as electron donor with high photocurrent. Journal of Materials Chemistry C, 2020, 8, 2232-2237.	5.5	23
101	A benzo[ghi]-perylene triimide based double-cable conjugated polymer for single-component organic solar cells. Chinese Chemical Letters, 2022, 33, 466-469.	9.0	23
102	All polymer solar cells with diketopyrrolopyrrole-polymers as electron donor and a naphthalenediimide-polymer as electron acceptor. RSC Advances, 2016, 6, 35677-35683.	3.6	22
103	Small bandgap porphyrin-based polymer acceptors for non-fullerene organic solar cells. Journal of Materials Chemistry C, 2018, 6, 717-721.	5.5	22
104	Origin of Improved Photoelectrochemical Water Splitting in Mixed Perovskite Oxides. Advanced Energy Materials, 2018, 8, 1801972.	19.5	22
105	Realizing lamellar nanophase separation in a double-cable conjugated polymer <i>via</i> a solvent annealing process. Polymer Chemistry, 2019, 10, 4584-4592.	3.9	22
106	Vertical Interface Induced Dielectric Relaxation in Nanocomposite (BaTiO3)1-x:(Sm2O3)x Thin Films. Scientific Reports, 2015, 5, 11335.	3.3	21
107	Methylated conjugated polymers based on diketopyrrolopyrrole and dithienothiophene for high performance field-effect transistors. Organic Electronics, 2016, 37, 366-370.	2.6	21
108	Conjugated molecular dyads with diketopyrrolopyrrole-based conjugated backbones for single-component organic solar cells. Materials Chemistry Frontiers, 2019, 3, 1565-1573.	5.9	21

#	Article	IF	CITATIONS
109	A diketopyrrolopyrrole-based macrocyclic conjugated molecule for organic electronics. Journal of Materials Chemistry C, 2019, 7, 3802-3810.	5.5	21
110	Characteristics of Settings and Etiologic Agents of Foodborne Disease Outbreaks — China, 2020. China CDC Weekly, 2021, 3, 889-893.	2.3	20
111	Insulating Polymers as Additives to Bulkâ€Heterojunction Organic Solar Cells: The Effect of Miscibility. ChemPhysChem, 2022, 23, .	2.1	20
112	Conjugated polymer with ternary electronâ€deficient units for ambipolar nanowire fieldâ€effect transistors. Journal of Polymer Science Part A, 2016, 54, 34-38.	2.3	19
113	Synthesis of thiophene-containing conjugated polymers from 2,5-thiophenebis(boronic ester)s by Suzuki polycondensation. Polymer Chemistry, 2013, 4, 895.	3.9	18
114	Small Band gap Boron Dipyrromethene-Based Conjugated Polymers for All-Polymer Solar Cells: The Effect of Methyl Units. Macromolecules, 2019, 52, 8367-8373.	4.8	18
115	Tailoring Nanowire Network Morphology and Charge Carrier Mobility of Poly(3-hexylthiophene)/C ₆₀ Films. Journal of Physical Chemistry C, 2009, 113, 11385-11389.	3.1	17
116	Efficient Top-Illuminated Organic-Quantum Dots Hybrid Tandem Solar Cells with Complementary Absorption. ACS Photonics, 2017, 4, 1172-1177.	6.6	17
117	High-Temperature and Flexible Piezoelectric Sensors for Lamb-Wave-Based Structural Health Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 47764-47772.	8.0	17
118	Mechanical-robust and recyclable polyimide substrates coordinated with cyclic Ti-oxo cluster for flexible organic solar cells. Npj Flexible Electronics, 2022, 6, .	10.7	17
119	Ethynyleneâ€containing donor–acceptor alternating conjugated polymers: Synthesis and photovoltaic properties. Journal of Polymer Science Part A, 2013, 51, 383-393.	2.3	16
120	A systematical investigation of non-fullerene solar cells based on diketopyrrolopyrrole polymers as electron donor. Organic Electronics, 2016, 35, 112-117.	2.6	16
121	Oxygen-vacancy-mediated dielectric property in perovskite Eu0.5Ba0.5TiO3-δepitaxial thin films. Applied Physics Letters, 2018, 112, .	3.3	16
122	All-Oxide Nanocomposites to Yield Large, Tunable Perpendicular Exchange Bias above Room Temperature. ACS Applied Materials & Interfaces, 2018, 10, 42593-42602.	8.0	16
123	End Group Engineering on the Side Chains of Conjugated Polymers toward Efficient Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 6151-6158.	8.0	16
124	Miscibility-Controlled Mechanical and Photovoltaic Properties in Double-Cable Conjugated Polymer/Insulating Polymer Composites. Macromolecules, 2022, 55, 322-330.	4.8	16
125	Manipulating leakage behavior via distribution of interfaces in oxide thin films. Applied Physics Letters, 2014, 105, 072907. Manipulating multiple order parameters via oxygen vacancies: The case of <mml:math< td=""><td>3.3</td><td>15</td></mml:math<>	3.3	15
126	<pre>wainputating indiciple order parameters via oxygen vacancies. The case of <min.math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi mathvariant="normal">E <mml:msub> <mml:mi mathvariant="normal">u <mml:mrow> <mml:mn>0.5 </mml:mn> </mml:mrow> </mml:mi </mml:msub> <mml:mi mathvariant="normal">B <mml:msub> <mml:mi mathvariant="normal">a <mml:msub> <mml:mi< pre=""></mml:mi<></mml:msub></mml:mi </mml:msub></mml:mi </mml:mi </mml:mrow></min.math </pre>	3.2 ic/mml·m	15

#	Article	IF	CITATIONS
127	Application of Whole-Genome Sequencing in the National Molecular Tracing Network for Foodborne Disease Surveillance in China. Foodborne Pathogens and Disease, 2021, 18, 538-546.	1.8	15
128	Enhancing the performance of non-fullerene solar cells with polymer acceptors containing large-sized aromatic units. Organic Electronics, 2017, 47, 133-138.	2.6	14
129	Vertical Strain-Driven Antiferromagnetic to Ferromagnetic Phase Transition in EuTiO ₃ Nanocomposite Thin Films. ACS Applied Materials & Interfaces, 2020, 12, 8513-8521.	8.0	14
130	Functional Ligand-Decorated ZnO Nanoparticles as Cathode Interlayers for Efficient Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 1291-1297.	5.1	14
131	Polythiophenes with Carbazole Side Chains: Design, Synthesis and Their Application in Organic Solar Cells. Macromolecular Chemistry and Physics, 2010, 211, 948-955.	2.2	13
132	Enhancing the Performance of Small-Molecule Organic Solar Cells via Fused-Ring Design. ACS Applied Materials & Interfaces, 2022, 14, 7093-7101.	8.0	13
133	Revisiting Conjugated Polymers with Long-Branched Alkyl Chains: High Molecular Weight, Excellent Mechanical Properties, and Low Voltage Losses. Macromolecules, 2022, 55, 5964-5974.	4.8	13
134	Strain dependent ultrafast carrier dynamics in EuTiO3 films. Applied Physics Letters, 2014, 105, .	3.3	12
135	Performance Enhancement of Polymer Solar Cells by Using Two Polymer Donors with Complementary Absorption Spectra. Macromolecular Rapid Communications, 2015, 36, 1348-1353.	3.9	12
136	Atomic‣cale Control of Electronic Structure and Ferromagnetic Insulating State in Perovskite Oxide Superlattices by Longâ€Range Tuning of BO ₆ Octahedra. Advanced Functional Materials, 2020, 30, 2001984.	14.9	12
137	Achieving ferromagnetic insulating properties in La _{0.9} Ba _{0.1} MnO ₃ thin films through nanoengineering. Nanoscale, 2020, 12, 9255-9265.	5.6	12
138	Benzothiadiazole-Based Double-Cable Conjugated Polymers for Single-Component Organic Solar Cells with Efficiency over 4%. ACS Applied Polymer Materials, 2021, 3, 4645-4650.	4.4	12
139	Highâ€Performance Indoor Organic Solar Cells Based on a Double able Conjugated Polymer. Solar Rrl, 2022, 6, .	5.8	12
140	Diketopyrrolopyrroleâ€Porphyrin Based Conjugated Polymers for Ambipolar Fieldâ€Effect Transistors. Chemistry - an Asian Journal, 2017, 12, 1861-1864.	3.3	11
141	Insulating-to-conducting behavior and band profile across the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>La</mml:mi><mml:n epitaxial interface. Physical Review B, 2017, 96, .</mml:n </mml:msub></mml:mrow></mml:math 	1ro 3v2 < mr	nl:mn>0.9
142	Negative-pressure enhanced ferroelectricity and piezoelectricity in lead-free BaTiO ₃ ferroelectric nanocomposite films. Journal of Materials Chemistry C, 2020, 8, 8091-8097.	5.5	11
143	Double-Cable Conjugated Polymers with Rigid Phenyl Linkers for Single-Component Organic Solar Cells. Macromolecules, 2022, 55, 2517-2523.	4.8	11
144	Use of Mesoscopic Host Matrix to Induce Ferrimagnetism in Antiferromagnetic Spinel Oxide. Advanced Functional Materials, 2018, 28, 1706220.	14.9	10

#	Article	IF	CITATIONS
145	High performance, electroforming-free, thin film memristors using ionic Na _{0.5} Bi _{0.5} TiO ₃ . Journal of Materials Chemistry C, 2021, 9, 4522-4531.	5.5	10
146	Origin of unexpected lattice expansion and ferromagnetism in epitaxial EuTiO3â€"î´ thin films. Ceramics International, 2020, 46, 19990-19995.	4.8	9
147	Nearâ€Infrared Nonfullerene Acceptors Based on 4 <i>H</i> â€Cyclopenta[1,2â€ <i>b</i> :5,4â€ <i>b</i> ′]dithiophene for Organic Solar Cells and Organic Fieldâ€Effect Transistors. Chemistry - an Asian Journal, 2021, 16, 4171-4178.	3.3	9
148	Superheated high-temperature size-exclusion chromatography with chloroform as the mobile phase for π-conjugated polymers. Polymer Chemistry, 2014, 5, 558-561.	3.9	8
149	Highly Efficient Synthesis of a Ladderâ€īype BNâ€Heteroacene and Polyheteroacene. Asian Journal of Organic Chemistry, 2018, 7, 465-470.	2.7	8
150	A Simple, Smallâ€Bandgap Porphyrinâ€Based Conjugated Polymer for Application in Organic Electronics. Macromolecular Rapid Communications, 2018, 39, e1800546.	3.9	7
151	Tuning critical phase transition in VO2 via interfacial control of normal and shear strain. Applied Physics Letters, 2019, 115, .	3.3	7
152	Optical and electrical properties of (111)-oriented epitaxial SrVO3 thin films. Ceramics International, 2019, 45, 11304-11308.	4.8	7
153	Naphthobistriazole based non-fused electron acceptors for organic solar cells. Journal of Materials Chemistry C, 2022, 10, 8070-8076.	5.5	7
154	Length Effect of Alkyl Linkers on the Crystalline Transition in Naphthalene Diimide-Based Double-Cable Conjugated Polymers. Macromolecules, 2022, 55, 5188-5196.	4.8	7
155	Effects of alkyl side chains of double-cable conjugated polymers on the photovoltaic performance of single-component organic solar cells. Journal of Materials Chemistry C, 2021, 9, 16240-16246.	5.5	6
156	Epitaxial (110)-oriented La _{0.7} Sr _{0.3} MnO ₃ film directly on flexible mica substrate. Journal Physics D: Applied Physics, 2022, 55, 224002.	2.8	6
157	Manipulating redox reaction during pulsed laser deposition. Journal of Applied Physics, 2015, 118, .	2.5	5
158	Enhancing the photovoltaic performance of binary acceptor-based conjugated polymers incorporating methyl units. RSC Advances, 2016, 6, 98071-98079.	3.6	5
159	Controllable conduction and hidden phase transitions revealed via vertical strain. Applied Physics Letters, 2019, 114, 252901.	3.3	5
160	Benzodithiopheneâ€Fused Perylene Bisimides as Electron Acceptors for Nonâ€Fullerene Organic Solar Cells with High Openâ€Circuit Voltage. ChemPhysChem, 2019, 20, 2696-2701.	2.1	5
161	Excited-state photophysical processes in a molecular system containing perylene bisimide and zinc porphyrin chromophores. Physical Chemistry Chemical Physics, 2020, 22, 20891-20900.	2.8	5
162	Nanostructure manipulation and its influence on functionalities in self-assembled oxide thin films. Journal of Applied Physics, 2014, 116, 183904.	2.5	4

#	Article	IF	CITATIONS
163	Creating Ferromagnetic Insulating La _{0.9} Ba _{0.1} MnO ₃ Thin Films by Tuning Lateral Coherence Length. ACS Applied Materials & Interfaces, 2021, 13, 8863-8870.	8.0	3
164	Incorporating semiflexible linkers into double-cable conjugated polymers <i>via</i> a click reaction. Polymer Chemistry, 2021, 12, 6865-6872.	3.9	3
165	Contactless charge carrier mobility measurement in organic field-effect transistors. Organic Electronics, 2014, 15, 2855-2861.	2.6	2
166	A Naphthalenediimide-Based Polymer Acceptor with Multidirectional Orientations via Double-Cable Design. Macromolecules, 2020, 53, 9279-9286.	4.8	2
167	Ultrafast Structure and Vibrational Dynamics of a Cyano-Containing Non-Fullerene Acceptor for Organic Solar Cells Revealed by Two-Dimensional Infrared Spectroscopy. Journal of Physical Chemistry B, 2021, 125, 11987-11995.	2.6	2
168	Impact of pendent naphthalenedimide content in random double-cable conjugated polymers on their microstructures and photovoltaic performance. Polymer, 2022, 253, 125020.	3.8	2
169	Simple Sn-based coordination complex as cathode interlayer for efficient organic solar cells. Organic Electronics, 2022, 108, 106577.	2.6	1
170	Rücktitelbild: An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells (Angew. Chem. 10/2017). Angewandte Chemie, 2017, 129, 2850-2850.	2.0	0
171	Fowler-Nordheim tunneling in -Ga2O3/SrRuO3 Schottky interfaces. Journal Physics D: Applied Physics, 0, , .	2.8	0