Arun V Salker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2301614/publications.pdf Version: 2024-02-01

ADIIN V SALKED

#	Article	IF	CITATIONS
1	In3+ doped magnesium ferrite an efficient magnetic catalyst for the synthesis of functionalized quinazolinone and Henry reaction. Journal of Chemical Sciences, 2022, 134, 1.	1.5	2
2	Fractional substitution of Mn ions in cobalt-copper ferrite: Effect on its magnetic, dielectric and microstructural properties. Inorganic Chemistry Communication, 2022, 142, 109684.	3.9	3
3	Promising effect of Ag/Rh paired mesoporous composite-oxide for low temperature NO CO reaction. Catalysis Communications, 2021, 149, 106257.	3.3	4
4	Influence of Cobalt Substitution in LaMnO ₃ on Catalytic Propylene Oxidation. Indonesian Journal of Chemistry, 2021, 21, 1244.	0.8	0
5	Photodegradation of Rhodamine B using Aqueous Free-Base Porphyrin and Metalloporphyrins of Divalent Metal Ions. Asian Journal of Chemistry, 2021, 34, 147-154.	0.3	0
6	Insulator-semiconductor transitions and photo-luminescent behaviour in doped copper tellurates. Materials Science in Semiconductor Processing, 2020, 105, 104758.	4.0	3
7	Highly tuned cobalt-doped MnO2 nanozyme as remarkably efficient uricase mimic. Applied Nanoscience (Switzerland), 2020, 10, 317-328.	3.1	9
8	Nitric oxide reduction by carbon monoxide and carbon monoxide oxidation by O2 over Co–Mn composite oxide material. Applied Nanoscience (Switzerland), 2020, 10, 141-149.	3.1	5
9	Synergistic effect of modified Pd-based cobalt chromite and manganese oxide system towards NO-CO redox detoxification reaction. Environmental Science and Pollution Research, 2020, 27, 27061-27071.	5.3	5
10	Significant effect of multi-doped cerium oxide for carbon monoxide oxidation studies. Materials Chemistry and Physics, 2020, 253, 123326.	4.0	9
11	A Route to Develop the Synergy Between CeO2 and CuO for Low Temperature CO Oxidation. Catalysis Letters, 2020, 150, 2774-2783.	2.6	9
12	Effect of fractional substitution of Sb3+ ions on structural, magnetic and electrical properties of cobalt ferrite. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 258, 114574.	3.5	10
13	Detoxification of NO and CO gases over effectively substituted Pd and Rh in cupric oxide catalysts. International Journal of Environmental Science and Technology, 2019, 16, 1541-1550.	3.5	2
14	An incredible magnetic Pd/CuFe2O4 catalyst for low-temperature aqueous Suzuki-Miyaura coupling. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	2
15	Effect Cr3+ Ion Substitution on the Structural, Magnetic, and Dielectric Behavior of Co–Cu Ferrite. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3655-3669.	1.8	11
16	Investigation of the effect of fractional In3+ ion substitution on the structural, magnetic, and dielectric properties of Co-Cu ferrite. Journal of Physics and Chemistry of Solids, 2019, 133, 151-162.	4.0	14
17	Structural, magnetic and dielectric properties of Dy3+ and Sm3+ substituted Co–Cu ferrite. Materials Research Express, 2019, 6, 066112.	1.6	9
18	Zirconium diselenite microstructures, formation and mechanism. Materials Research Express, 2018, 5, 045023.	1.6	1

ARUN V SALKER

#	Article	IF	CITATIONS
19	Tailoring magnetic and dielectric properties of Co0.9Cu0.1Fe2O4 with substitution of small fractions of Gd3+ ions. Journal of Materials Science: Materials in Electronics, 2018, 29, 5380-5390.	2.2	6
20	Effect of indium doping on magnetic properties of cerium oxide nanoparticles. Materials Chemistry and Physics, 2018, 212, 336-342.	4.0	10
21	Complete detoxification reaction by NO reduction with CO over nanoâ€sized copperâ€substituted Cr ₂ O ₃ . Surface and Interface Analysis, 2018, 50, 1343-1348.	1.8	1
22	Effect of Cu2+ substitution on structural, magnetic and dielectric properties of cobalt ferrite with its enhanced antimicrobial property. Journal of Materials Science: Materials in Electronics, 2018, 29, 14746-14761.	2.2	18
23	Alâ€Doped FeVO ₄ Nanoparticles for Vapour Phase Methylation of Phenol. ChemistrySelect, 2018, 3, 7602-7607.	1.5	7
24	Efficiently synthesized Co doped Cu ₃ TeO ₆ accounted for its anomalous behaviour in electronic properties. New Journal of Chemistry, 2017, 41, 13974-13982.	2.8	9
25	A systematic study of cobalt doped In2O3 nanoparticles and their applications. Materials Research Innovations, 2017, 21, 237-243.	2.3	10
26	Vapor phase methylation of phenol on Fe-substituted ZrO2 catalyst. Chinese Journal of Catalysis, 2016, 37, 1991-1996.	14.0	13
27	Catalytic activity and mechanistic approach of NO reduction by CO over M0.05Co2.95O4 (M = Rh, Pd) Tj ETQq1	1	14 ₋₁ gBT /Ove
28	Room temperature complete reduction of nitroarenes over a novel Cu/SiO ₂ @NiFe ₂ O ₄ nano-catalyst in an aqueous medium – a kinetic and mechanistic study. RSC Advances, 2016, 6, 108458-108467.	3.6	14
29	Tailoring the super-paramagnetic nature of MgFe 2 O 4 nanoparticles by In 3+ incorporation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 211, 37-44.	3.5	27
30	Evaluation of silver-doped indium oxide nanoparticles as in vitro α-amylase and α-glucosidase inhibitors. Medicinal Chemistry Research, 2016, 25, 381-389.	2.4	13
31	Low-temperature nitric oxide reduction over silver-substituted cobalt oxide spinels. Catalysis Science and Technology, 2016, 6, 430-433.	4.1	21
32	Antibacterial action of doped CoFe2O4 nanocrystals on multidrug resistant bacterial strains. Materials Science and Engineering C, 2015, 52, 282-287.	7.3	33
33	Preparation, characterization and photoluminescent studies of Cr and Nd co-doped Ce:YAG compounds. Journal of Luminescence, 2015, 161, 335-342.	3.1	21
34	Variation in the magnetic moment of Indium doped Ce0.1Y2.9Fe5O12 garnet relative to the site inversion. Journal of Alloys and Compounds, 2014, 600, 137-145.	5.5	35
35	Low temperature CO oxidation over nano-sized Cu–Pd doped MnO2 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108, 173.	1.7	6
36	Thermal studies of metalloporphyrins with metals in different oxidation states. Journal of Thermal Analysis and Calorimetry, 2013, 112, 11-15.	3.6	1

ARUN V SALKER

#	Article	IF	CITATIONS
37	Synthesis and evaluation of antibacterial activity of water-soluble copper, nickel and zinc tetra (n-carbonylacrylic) aminephthalocyanines. Medicinal Chemistry Research, 2013, 22, 4300-4307.	2.4	12
38	Influence of Co2+ distribution and spin–orbit coupling on the resultant magnetic properties of spinel cobalt ferrite nanocrystals. Journal of Alloys and Compounds, 2013, 566, 54-61.	5.5	123
39	Antibacterial activity of silverâ€doped manganese dioxide nanoparticles on multidrugâ€resistant bacteria. Journal of Chemical Technology and Biotechnology, 2013, 88, 873-877.	3.2	41
40	Synthesis, purification and thermal behaviour of sulfonated metalloporphyrins. Journal of Thermal Analysis and Calorimetry, 2012, 109, 1487-1492.	3.6	13
41	Enhancement in the magnetic moment with Cr3+ doping and its effect on the magneto-structural properties of Ce0.1Y2.9Fe5O12. Physical Chemistry Chemical Physics, 2012, 14, 10032.	2.8	29
42	Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. Journal of Materials Chemistry, 2012, 22, 2740-2750.	6.7	205
43	Activity of Pd doped and supported Mn2O3 nanomaterials for CO oxidation. Reaction Kinetics, Mechanisms and Catalysis, 2012, 106, 395-405.	1.7	18
44	Thermal studies of cobalt, iron and tin metalloporphyrins. Journal of Thermal Analysis and Calorimetry, 2010, 101, 809-813.	3.6	16
45	Solid state studies on cobalt and copper tungstates nano materials. Solid State Sciences, 2010, 12, 2065-2072.	3.2	54
46	Mechanistic study of acidic and basic sites for CO oxidation over nano based Co2â^'xFexWO6 catalysts. Applied Catalysis B: Environmental, 2009, 89, 246-254.	20.2	24
47	Palladium doped manganese dioxide catalysts for low temperature carbon monoxide oxidation. Catalysis Communications, 2009, 10, 1776-1780.	3.3	27
48	Reactivity of NO with NH3 in the Presence of O2 over Ce-ZSM5 with and without Moisture. Reaction Kinetics and Catalysis Letters, 2001, 73, 209-216.	0.6	0
49	Catalytic behaviour of metal based ZSM-5 catalysts for NOx reduction with NH3 in dry and humid conditions. Applied Catalysis A: General, 2000, 203, 221-229.	4.3	58
50	Electronic and catalytic studies on Co1 â^' xCuxMn2O4 for CO oxidation. Journal of Materials Science, 2000, 35, 4713-4719.	3.7	55
51	Low temperature simultaneous detoxification of NO and CO over precious metal-free nanocomposite metal oxides. New Journal of Chemistry, 0, , .	2.8	0