
Christian Hartinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2301430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioorganometallic chemistry—from teaching paradigms to medicinal applications. Chemical Society Reviews, 2009, 38, 391-401.	18.7	916
2	From bench to bedside – preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A). Journal of Inorganic Biochemistry, 2006, 100, 891-904.	1.5	882
3	Antitumour metal compounds: more than theme and variations. Dalton Transactions, 2007, , 183-194.	1.6	767
4	KP1019, A New Redoxâ€Active Anticancer Agent – Preclinical Development and Results of a Clinical Phase I Study in Tumor Patients. Chemistry and Biodiversity, 2008, 5, 2140-2155.	1.0	732
5	Interactions of Antitumor Metallodrugs with Serum Proteins:Â Advances in Characterization Using Modern Analytical Methodology. Chemical Reviews, 2006, 106, 2224-2248.	23.0	570
6	Challenges and Opportunities in the Development of Organometallic Anticancer Drugs. Organometallics, 2012, 31, 5677-5685.	1.1	507
7	Anticancer Activity of Metal Complexes: Involvement of Redox Processes. Antioxidants and Redox Signaling, 2011, 15, 1085-1127.	2.5	420
8	The development of RAPTA compounds for the treatment of tumors. Coordination Chemistry Reviews, 2016, 306, 86-114.	9.5	375
9	Structure–activity relationships for ruthenium and osmium anticancer agents – towards clinical development. Chemical Society Reviews, 2018, 47, 909-928.	18.7	330
10	Emerging Protein Targets for Anticancer Metallodrugs: Inhibition of Thioredoxin Reductase and Cathepsin B by Antitumor Ruthenium(II)â~'Arene Compounds. Journal of Medicinal Chemistry, 2008, 51, 6773-6781.	2.9	258
11	Gold(III) compounds as anticancer agents: Relevance of gold–protein interactions for their mechanism of action. Journal of Inorganic Biochemistry, 2008, 102, 564-575.	1.5	249
12	Opening the lid on piano-stool complexes: An account ofÂruthenium(II)–arene complexes with medicinal applications. Journal of Organometallic Chemistry, 2014, 751, 251-260.	0.8	236
13	The ruthenium(II)–arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial and p53–JNK pathways. Journal of Biological Inorganic Chemistry, 2008, 13, 1149-1155.	1.1	232
14	Pharmacokinetics of a novel anticancer ruthenium complex (KP1019, FFC14A) in a phase I dose-escalation study. Anti-Cancer Drugs, 2009, 20, 97-103.	0.7	214
15	Structureâ [°] Activity Relationships for NAMI-A-type Complexes (HL) [trans-RuCl4L(S-dmso)ruthenate(III)] (L = Imidazole, Indazole, 1,2,4-Triazole, 4-Amino-1,2,4-triazole, and 1-Methyl-1,2,4-triazole):Â Aquation, Redox Properties, Protein Binding, and Antiproliferative Activity. Journal of Medicinal Chemistry, 2007, 50, 2185-2193.	2.9	206
16	Resistance against novel anticancer metal compounds: Differences and similarities. Drug Resistance Updates, 2008, 11, 1-16.	6.5	201
17	Redox behavior of tumor-inhibiting ruthenium(iii) complexes and effects of physiological reductants on their binding to GMP. Dalton Transactions, 2006, , 1796.	1.6	197
18	Transferrin binding and transferrin-mediated cellular uptake of the ruthenium coordination compound KP1019, studied by means of AAS, ESI-MS and CD spectroscopy. Journal of Analytical Atomic Spectrometry, 2004, 19, 46.	1.6	183

#	Article	IF	CITATIONS
19	Influence of the Spacer Length on the <i>in Vitro</i> Anticancer Activity of Dinuclear Rutheniumâ^'Arene Compounds. Organometallics, 2008, 27, 2405-2407.	1.1	180
20	Transferring the Concept of Multinuclearity to Ruthenium Complexes for Improvement of Anticancer Activity. Journal of Medicinal Chemistry, 2009, 52, 916-925.	2.9	168
21	Carbohydrate-Metal Complexes and their Potential as Anticancer Agents. Current Medicinal Chemistry, 2008, 15, 2574-2591.	1.2	160
22	A Ruthenium Antimetastasis Agent Forms Specific Histone Protein Adducts in the Nucleosome Core. Chemistry - A European Journal, 2011, 17, 3562-3566.	1.7	160
23	Redox-Active Antineoplastic Ruthenium Complexes with Indazole:Â Correlation of in Vitro Potency and Reduction Potential. Journal of Medicinal Chemistry, 2005, 48, 2831-2837.	2.9	156
24	Development of anticancer agents: wizardry with osmium. Drug Discovery Today, 2014, 19, 1640-1648.	3.2	139
25	Impact of the Halogen Substitution Pattern on the Biological Activity of Organoruthenium 8-Hydroxyquinoline Anticancer Agents. Organometallics, 2015, 34, 5658-5668.	1.1	133
26	Structure–Activity Relationships of Targeted Ru ^{II} (η ⁶ - <i>p</i> -Cymene) Anticancer Complexes with Flavonol-Derived Ligands. Journal of Medicinal Chemistry, 2012, 55, 10512-10522.	2.9	132
27	Application of mass spectrometric techniques to delineate the modes-of-action of anticancer metallodrugs. Chemical Society Reviews, 2013, 42, 6186.	18.7	132
28	Tuning the hydrophobicity of ruthenium(ii)–arene (RAPTA) drugs to modify uptake, biomolecular interactions and efficacy. Dalton Transactions, 2007, , 5065.	1.6	131
29	Targeting the DNA-topoisomerase complex in a double-strike approach with a topoisomerase inhibiting moiety and covalent DNA binder. Chemical Communications, 2012, 48, 4839.	2.2	130
30	Anticancer metallodrugs: where is the next cisplatin?. Future Medicinal Chemistry, 2018, 10, 615-617.	1.1	128
31	Organometallic anticancer complexes of lapachol: metal centre-dependent formation of reactive oxygen species and correlation with cytotoxicity. Chemical Communications, 2013, 49, 3348.	2.2	127
32	Target profiling of an antimetastatic RAPTA agent by chemical proteomics: relevance to the mode of action. Chemical Science, 2015, 6, 2449-2456.	3.7	127
33	Platinum metallodrug-protein binding studies by capillary electrophoresis-inductively coupled plasma-mass spectrometry: Characterization of interactions between Pt(II) complexes and human serum albumin. Electrophoresis, 2004, 25, 1988-1995.	1.3	125
34	Platinum nanoparticles and their cellular uptake and DNA platination at non-cytotoxic concentrations. Archives of Toxicology, 2011, 85, 799-812.	1.9	125
35	Characterization of the binding sites of the anticancer ruthenium(III) complexes KP1019 and KP1339 on human serum albumin via competition studies. Journal of Biological Inorganic Chemistry, 2013, 18, 9-17.	1.1	125
36	In Vitro Anticancer Activity and Biologically Relevant Metabolization of Organometallic Ruthenium Complexes with Carbohydrateâ€Based Ligands. Chemistry - A European Journal, 2008, 14, 9046-9057.	1.7	111

#	Article	IF	CITATIONS
37	Maltolâ€Derived Ruthenium–Cymene Complexes with Tumor Inhibiting Properties: The Impact of Ligand–Metal Bond Stability on Anticancer Activity In Vitro. Chemistry - A European Journal, 2009, 15, 12283-12291.	1.7	111
38	Novel metal(ii) arene 2-pyridinecarbothioamides: a rationale to orally active organometallic anticancer agents. Chemical Science, 2013, 4, 1837.	3.7	111
39	Hydrolysis study of the bifunctional antitumour compound RAPTA-C, [Ru(η6-p-cymene)Cl2(pta)]. Journal of Inorganic Biochemistry, 2008, 102, 1743-1748.	1.5	108
40	Tuning of lipophilicity and cytotoxic potency by structural variation of anticancer platinum(IV) complexes. Journal of Inorganic Biochemistry, 2011, 105, 46-51.	1.5	107
41	Physicochemical Studies and Anticancer Potency of Ruthenium η ⁶ - <i>p</i> -Cymene Complexes Containing Antibacterial Quinolones. Organometallics, 2011, 30, 2506-2512.	1.1	105
42	Studies on the reactivity of organometallic Ru–, Rh– and Os–pta complexes with DNA model compounds. Journal of Inorganic Biochemistry, 2008, 102, 1066-1076.	1.5	101
43	Is the Reactivity of M(II)â^'Arene Complexes of 3-Hydroxy-2(1 <i>H</i>)-pyridones to Biomolecules the Anticancer Activity Determining Parameter?. Inorganic Chemistry, 2010, 49, 7953-7963.	1.9	101
44	Platinum group metallodrug-protein binding studies by capillary electrophoresis – inductively coupled plasma-mass spectrometry: A further insight into the reactivity of a novel antitumor ruthenium(III) complex toward human serum proteins. Electrophoresis, 2006, 27, 1128-1135.	1.3	100
45	Development of an experimental protocol for uptake studies of metal compounds in adherent tumor cells. Journal of Analytical Atomic Spectrometry, 2009, 24, 51-61.	1.6	100
46	Two dimensional separation schemes for investigation of the interaction of an anticancer ruthenium(iii) compound with plasma proteins. Journal of Analytical Atomic Spectrometry, 2005, 20, 856.	1.6	99
47	An Organoruthenium Anticancer Agent Shows Unexpected Target Selectivity For Plectin. Angewandte Chemie - International Edition, 2017, 56, 8267-8271.	7.2	97
48	Biodistribution of the novel anticancer drug sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] KP-1339/IT139 in nude BALB/c mice and implications on its mode of action. Journal of Inorganic Biochemistry, 2016, 160, 250-255.	1.5	94
49	CZE–ICP-MS as a tool for studying the hydrolysis of ruthenium anticancer drug candidates and their reactivity towards the DNA model compound dGMP. Journal of Inorganic Biochemistry, 2008, 102, 1060-1065.	1.5	92
50	Influence of the Arene Ligand, the Number and Type of Metal Centers, and the Leaving Group on the <i>in Vitro</i> Antitumor Activity of Polynuclear Organometallic Compounds. Organometallics, 2009, 28, 6260-6265.	1.1	92
51	Characterization of Platinum Anticancer Drug Protein-Binding Sites Using a Top-Down Mass Spectrometric Approach. Inorganic Chemistry, 2008, 47, 17-19.	1.9	91
52	Maleimide-functionalised organoruthenium anticancer agents and their binding to thiol-containing biomolecules. Chemical Communications, 2012, 48, 1475-1477.	2.2	91
53	Mass spectrometric analysis of ubiquitin–platinum interactions of leading anticancer drugs: MALDI versus ESI. Journal of Analytical Atomic Spectrometry, 2007, 22, 960-967.	1.6	89
54	A Reducedâ€Symmetry Heterobimetallic [PdPtL ₄] ⁴⁺ Cage: Assembly, Guest Binding, and Stimulusâ€Induced Switching. Angewandte Chemie - International Edition, 2020, 59, 11101-11107.	7.2	89

#	Article	IF	CITATIONS
55	Osmium(ii)–versus ruthenium(ii)–arene carbohydrate-based anticancer compounds: similarities and differences. Dalton Transactions, 2010, 39, 7345.	1.6	88
56	Capillary electrophoresis hyphenated to inductively coupled plasmaâ€mass spectrometry: A novel approach for the analysis of anticancer metallodrugs in human serum and plasma. Electrophoresis, 2008, 29, 2224-2232.	1.3	86
57	Ruthenium versus platinum: interactions of anticancer metallodrugs with duplex oligonucleotides characterised by electrospray ionisation mass spectrometry. Journal of Biological Inorganic Chemistry, 2010, 15, 677-688.	1.1	86
58	Pyrone derivatives and metals: From natural products to metal-based drugs. Journal of Organometallic Chemistry, 2011, 696, 999-1010.	0.8	86
59	Comparative binding of antitumor indazolium [trans-tetrachlorobis(1H-indazole)ruthenate(III)] to serum transport proteins assayed by capillary zone electrophoresis. Analytical Biochemistry, 2005, 341, 326-333.	1.1	85
60	From Pyrone to Thiopyrone Ligandsâ^'Rendering Maltol-Derived Ruthenium(II)â^'Arene Complexes That Are Anticancer Active in Vitro. Organometallics, 2009, 28, 4249-4251.	1.1	85
61	Anticancer Ruthenium(η ⁶ - <i>p</i> -cymene) Complexes of Nonsteroidal Anti-inflammatory Drug Derivatives. Organometallics, 2014, 33, 5546-5553.	1.1	82
62	Determination of binding constants and stoichiometries for platinum anticancer drugs and serum transport proteins by capillary electrophoresis using the Hummel-Dreyer method. Journal of Separation Science, 2005, 28, 121-127.	1.3	80
63	Polynuclear Ruthenium, Osmium and Gold Complexes. The Quest for Innovative Anticancer Chemotherapeutics. Current Topics in Medicinal Chemistry, 2011, 11, 2688-2702.	1.0	80
64	A comparative study of adduct formation between the anticancer ruthenium(III) compound HInd trans-[RuCl4(Ind)2] and serum proteins. Journal of Inorganic Biochemistry, 2004, 98, 1135-1142.	1.5	79
65	Influence of Structural Variation on the Anticancer Activity of RAPTA-Type Complexes: ptn versus pta. Organometallics, 2009, 28, 1165-1172.	1.1	79
66	Suzuki Coupling Reactions in Ether-Functionalized Ionic Liquids: The Importance of Weakly Interacting Cations. Organometallics, 2008, 27, 3971-3977.	1.1	78
67	DNA interactions of dinuclear Rull arene antitumor complexes in cell-free media. Biochemical Pharmacology, 2009, 77, 364-374.	2.0	76
68	Synthesis, Cytotoxicity, and COMPARE Analysis of Ferrocene and [3]Ferrocenophane Tetrasubstituted Olefin Derivatives against Human Cancer Cells. ChemMedChem, 2010, 5, 2039-2050.	1.6	76
69	3-Hydroxyflavones vs. 3-hydroxyquinolinones: structure–activity relationships and stability studies on Ru ^{II} (arene) anticancer complexes with biologically active ligands. Dalton Transactions, 2013, 42, 6193-6202.	1.6	74
70	Antitumor pentamethylcyclopentadienyl rhodium complexes of maltol and allomaltol: Synthesis, solution speciation and bioactivity. Journal of Inorganic Biochemistry, 2014, 134, 57-65.	1.5	73
71	Protein ruthenation and DNA alkylation: chlorambucil-functionalized RAPTA complexes and their anticancer activity. Dalton Transactions, 2015, 44, 3614-3623.	1.6	68
72	From hydrolytically labile to hydrolytically stable RuII–arene anticancer complexes with carbohydrate-derived co-ligands. Journal of Inorganic Biochemistry, 2011, 105, 224-231.	1.5	65

#	Article	IF	CITATIONS
73	Tuning the anticancer activity of maltol-derived ruthenium complexes by derivatization of the 3-hydroxy-4-pyrone moiety. Journal of Organometallic Chemistry, 2009, 694, 922-929.	0.8	64
74	High Resolution Mass Spectrometry for Studying the Interactions of Cisplatin with Oligonucleotides. Inorganic Chemistry, 2008, 47, 10626-10633.	1.9	63
75	LC– and CZE–ICP-MS approaches for the in vivo analysis of the anticancer drug candidate sodium trans-[tetrachloridobis(1H-indazole)ruthenate(iii)] (KP1339) in mouse plasma. Metallomics, 2011, 3, 1049.	1.0	62
76	Synthesis and Biological Evaluation of the Thionated Antibacterial Agent Nalidixic Acid and Its Organoruthenium(II) Complex. Organometallics, 2012, 31, 5867-5874.	1.1	62
77	Halfâ€Sandwich Ruthenium(II) Biotin Conjugates as Biological Vectors to Cancer Cells. Chemistry - A European Journal, 2015, 21, 5110-5117.	1.7	60
78	CE in anticancer metallodrug research – an update. Electrophoresis, 2007, 28, 3436-3446.	1.3	59
79	Stability of an organometallic ruthenium–ubiquitin adduct in the presence of glutathione: Relevance to antitumour activity. Journal of Inorganic Biochemistry, 2008, 102, 2136-2141.	1.5	59
80	Nitrile-functionalized pyrrolidinium ionic liquids as solvents for cross-coupling reactions involving in situ generated nanoparticlecatalyst reservoirs. Physical Chemistry Chemical Physics, 2010, 12, 1834-1841.	1.3	58
81	Identification of the Structural Determinants for Anticancer Activity of a Ruthenium Arene Peptide Conjugate. Chemistry - A European Journal, 2013, 19, 9297-9307.	1.7	58
82	Quantitative bioimaging by LA-ICP-MS: a methodological study on the distribution of Pt and Ru in viscera originating from cisplatin- and KP1339-treated mice. Metallomics, 2014, 6, 1616-1625.	1.0	58
83	Chemical imaging and assessment of cadmium distribution in the human body. Metallomics, 2019, 11, 2010-2019.	1.0	58
84	Organometallic Antitumour Agents with Alternative Modes of Action. Topics in Organometallic Chemistry, 2010, , 57-80.	0.7	57
85	Anticancer metallodrug research analytically painting the "omics―picture—current developments and future trends. Analytical and Bioanalytical Chemistry, 2013, 405, 1791-1808.	1.9	57
86	Capillary electrophoresis in anti-cancer metallodrug research: Advances and future challenges. Electrophoresis, 2003, 24, 2023-2037.	1.3	55
87	Anticancer Activity of Methyl-Substituted Oxaliplatin Analogs. Molecular Pharmacology, 2012, 81, 719-728.	1.0	54
88	Anthracene-Tethered Ruthenium(II) Arene Complexes as Tools To Visualize the Cellular Localization of Putative Organometallic Anticancer Compounds. Inorganic Chemistry, 2012, 51, 3633-3639.	1.9	54
89	From Catalysis to Cancer: Toward Structure–Activity Relationships for Benzimidazol-2-ylidene-Derived <i>N</i> -Heterocyclic-Carbene Complexes as Anticancer Agents. Inorganic Chemistry, 2018, 57, 14427-14434.	1.9	54
90	Reversion of Structure-Activity Relationships of Antitumor Platinum Complexes by Acetoxime but Not Hydroxylamine Ligands. Molecular Pharmacology, 2007, 71, 357-365.	1.0	53

#	Article	IF	CITATIONS
91	Comparative solution equilibrium studies of anticancer gallium(III) complexes of 8-hydroxyquinoline and hydroxy(thio)pyrone ligands. Journal of Inorganic Biochemistry, 2012, 117, 189-197.	1.5	53
92	Biomolecule binding vs. anticancer activity: Reactions of Ru(arene)[(thio)pyr-(id)one] compounds with amino acids and proteins. Journal of Inorganic Biochemistry, 2012, 108, 91-95.	1.5	53
93	Potent Inhibition of Thioredoxin Reductase by the Rh Derivatives of Anticancer M(arene/Cp*)(NHC)Cl ₂ Complexes. Inorganic Chemistry, 2020, 59, 3281-3289.	1.9	53
94	Analysis of Platinum Adducts with DNA Nucleotides and Nucleosides by Capillary Electrophoresis Coupled to ESI-MS: Indications of Guanosine 5′-Monophosphate O6-N7 Chelation. ChemBioChem, 2004, 5, 1543-1549.	1.3	52
95	{(1 <i>R</i> ,2 <i>R</i> ,4 <i>R</i>)-4-Methyl-1,2-cyclohexanediamine}oxalatoplatinum(II): A Novel Enantiomerically Pure Oxaliplatin Derivative Showing Improved Anticancer Activity in Vivo. Journal of Medicinal Chemistry, 2010, 53, 7356-7364.	2.9	51
96	Cellular accumulation and DNA interaction studies of cytotoxic trans-platinum anticancer compounds. Journal of Biological Inorganic Chemistry, 2012, 17, 465-474.	1.1	51
97	A glucose derivative as natural alternative to the cyclohexane-1,2-diamine ligand in the anticancer drug oxaliplatin?. ChemMedChem, 2007, 2, 505-514.	1.6	49
98	Metal complexes of benzimidazole derived sulfonamide: Synthesis, molecular structures and antimicrobial activity. Inorganica Chimica Acta, 2016, 443, 179-185.	1.2	49
99	The serum protein binding of pharmacologically active gallium(III) compounds assessed by hyphenated CEâ€MS techniques. Electrophoresis, 2009, 30, 2720-2727.	1.3	48
100	Synthesis, crystal structure and pH dependent cytotoxicity of (SP-4-2)-bis(2-aminoethanolato-lº2N,O)platinum(II) – a representative of novel pH sensitive anticancer platinum complexes. Inorganica Chimica Acta, 2004, 357, 3237-3244.	1.2	46
101	Metallodrug research and analysis using capillary electrophoresis. TrAC - Trends in Analytical Chemistry, 2006, 25, 868-875.	5.8	46
102	Probing the stability of serum protein–ruthenium(III) drug adducts in the presence of extracellular reductants using CE. Electrophoresis, 2007, 28, 2235-2240.	1.3	46
103	Modifying the structure of dinuclear ruthenium complexes with antitumor activity. Applied Organometallic Chemistry, 2008, 22, 326-332.	1.7	45
104	Metabolization of [Ru(η6-C6H5CF3)(pta)Cl2]: a cytotoxic RAPTA-type complex with a strongly electron withdrawing arene ligand. Journal of Biological Inorganic Chemistry, 2010, 15, 919-927.	1.1	45
105	The first example of MEEKCâ€ICPâ€IMS coupling and its application for the analysis of anticancer platinum complexes. Electrophoresis, 2010, 31, 1144-1150.	1.3	45
106	Towards targeting anticancer drugs: ruthenium(<scp>ii</scp>)–arene complexes with biologically active naphthoquinone-derived ligand systems. Dalton Transactions, 2016, 45, 13091-13103.	1.6	45
107	Rollover Cyclometalated Bipyridine Platinum Complexes as Potent Anticancer Agents: Impact of the Ancillary Ligands on the Mode of Action. Inorganic Chemistry, 2018, 57, 2851-2864.	1.9	45
108	Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coordination Chemistry Reviews, 2021, 445, 213950.	9.5	45

#	Article	IF	CITATIONS
109	Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coordination Chemistry Reviews, 2021, 439, 213890.	9.5	44
110	Anticancer organorhodium and -iridium complexes with low toxicity <i>in vivo</i> but high potency <i>in vitro</i> : DNA damage, reactive oxygen species formation, and haemolytic activity. Chemical Communications, 2019, 55, 12016-12019.	2.2	40
111	Fragmentation methods on the balance: unambiguous top–down mass spectrometric characterization of oxaliplatin–ubiquitin binding sites. Analytical and Bioanalytical Chemistry, 2012, 402, 2655-2662.	1.9	39
112	A new target for gold(I) compounds: Glutathione-S-transferase inhibition by auranofin. Journal of Inorganic Biochemistry, 2013, 119, 38-42.	1.5	39
113	Anticancer activity of Ru- and Os(arene) compounds of a maleimide-functionalized bioactive pyridinecarbothioamide ligand. Journal of Inorganic Biochemistry, 2016, 165, 100-107.	1.5	38
114	Tumor-inhibiting platinum(II) complexes with aminoalcohol ligands: Comparison of the mode of action by capillary electrophoresis and electrospray ionization-mass spectrometry. Electrophoresis, 2003, 24, 2038-2044.	1.3	37
115	Biological properties of ruthenium(II)/(III) complexes with flavonoids as ligands. Coordination Chemistry Reviews, 2021, 436, 213849.	9.5	37
116	Characterizing activation mechanisms and binding preferences of ruthenium metallo-prodrugs by a competitive binding assay. Journal of Inorganic Biochemistry, 2017, 177, 322-327.	1.5	35
117	(Pyridin-2-yl)-NHC Organoruthenium Complexes: Antiproliferative Properties and Reactivity toward Biomolecules. Organometallics, 2018, 37, 1575-1584.	1.1	35
118	Heterotrimetallic Double Cavity Cages: Syntheses and Selective Guest Binding. Angewandte Chemie - International Edition, 2022, 61, e202201700.	7.2	35
119	The metalation of hen egg white lysozyme impacts protein stability as shown by ion mobility mass spectrometry, differential scanning calorimetry, and X-ray crystallography. Chemical Communications, 2017, 53, 4246-4249.	2.2	34
120	Unexpected arene ligand exchange results in the oxidation of an organoruthenium anticancer agent: the first X-ray structure of a protein–Ru(carbene) adduct. Chemical Communications, 2018, 54, 6120-6123.	2.2	34
121	Characterization of interactions between human serum albumin and tumor-inhibiting amino alcohol platinum(II) complexes using capillary electrophoresis. Journal of Chromatography A, 2007, 1155, 218-221.	1.8	33
122	Elucidation of the Interactions of an Anticancer Ruthenium Complex in Clinical Trials with Biomolecules Utilizing Capillary Electrophoresis Hyphenated to Inductively Coupled Plasmaâ€Mass Spectrometry. Short Communication. Chemistry and Biodiversity, 2008, 5, 1609-1614.	1.0	33
123	New Insights into the Chemistry of the Antineoplastic Lanthanum Complex Tris(1,10â€phenanthroline)tris(thiocyanatoâ€iº <i>N</i>)lanthanum(III) (KP772) and Its Interaction with Biomolecules. European Journal of Inorganic Chemistry, 2009, 2009, 4282-4287.	1.0	33
124	Influence of the Arene Ligand and the Leaving Group on the Anticancer Activity of (Thio)maltol Ruthenium(II)–(η6-Arene) Complexes. Australian Journal of Chemistry, 2010, 63, 1521.	0.5	33
125	Antiâ€Inflammatory Oxicams as Multiâ€donor Ligand Systems: pH―and Solventâ€Dependent Coordination Modes of Meloxicam and Piroxicam to Ru and Os. Chemistry - A European Journal, 2017, 23, 4893-4902.	1.7	33
126	Hydroxyquinoline-derived anticancer organometallics: Introduction of amphiphilic PTA as an ancillary ligand increases their aqueous solubility. Journal of Inorganic Biochemistry, 2019, 199, 110768.	1.5	33

#	Article	IF	CITATIONS
127	Am(m)ines Make the Difference: Organoruthenium Am(m)ine Complexes and Their Chemistry in Anticancer Drug Development. Chemistry - A European Journal, 2013, 19, 4308-4318.	1.7	31
128	Organoruthenium and Osmium Anticancer Complexes Bearing a Maleimide Functional Group: Reactivity to Cysteine, Stability, and Cytotoxicity. ChemPlusChem, 2015, 80, 231-236.	1.3	31
129	Making organoruthenium complexes of 8-hydroxyquinolines more hydrophilic: impact of a novel <scp>l</scp> -phenylalanine-derived arene ligand on the biological activity. Dalton Transactions, 2018, 47, 2192-2201.	1.6	31
130	A Reduced‧ymmetry Heterobimetallic [PdPtL ₄] ⁴⁺ Cage: Assembly, Guest Binding, and Stimulusâ€Induced Switching. Angewandte Chemie, 2020, 132, 11194-11200.	1.6	29
131	Novel glucose-ferrocenyl derivatives: synthesis and properties. New Journal of Chemistry, 2002, 26, 671-673.	1.4	28
132	Anticancer Ru(η6-p-cymene) complexes of 2-pyridinecarbothioamides: A structure–activity relationship study. Journal of Inorganic Biochemistry, 2017, 177, 395-401.	1.5	28
133	DNA Interactions of pH-Sensitive, Antitumor Bis(aminoalcohol)dichloroplatinum(II) Complexesâ€,‡. Biochemistry, 2006, 45, 14817-14825.	1.2	27
134	RutheniumII(η6-arene) Complexes of Thiourea Derivatives: Synthesis, Characterization and Urease Inhibition. Molecules, 2014, 19, 8080-8092.	1.7	27
135	Extravasation of Pt-based chemotherapeutics – bioimaging of their distribution in resectates using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Metallomics, 2015, 7, 508-515.	1.0	27
136	Cationic Ru(η ⁶ â€ <i>p</i> â€cymene) Complexes of 3â€Hydroxyâ€4â€pyr(id)ones – Lipophilic Triphenylphosphine as Coâ€Ligand Is Key to Highly Stable and Cytotoxic Anticancer Agents. European Journal of Inorganic Chemistry, 2017, 2017, 1721-1727.	1.0	27
137	Structural Modifications of the Antiinflammatory Oxicam Scaffold and Preparation of Anticancer Organometallic Compounds. Organometallics, 2019, 38, 361-374.	1.1	27
138	Mannich products of kojic acid and N-heterocycles and their Ru(II)–arene complexes: Synthesis, characterization and stability. Journal of Organometallic Chemistry, 2010, 695, 875-881.	0.8	26
139	Ru ^{II} (η ⁶ â€ <i>p</i> â€cymene) Complexes of Bioactive 1,2â€Benzothiazines: Protein Binding vs. Antitumor Activity. European Journal of Inorganic Chemistry, 2016, 2016, 1376-1382.	1.0	26
140	DNA or protein? Capillary zone electrophoresis–mass spectrometry rapidly elucidates metallodrug binding selectivity. Chemical Communications, 2017, 53, 8002-8005.	2.2	26
141	A Bioactive <scp>l</scp> -Phenylalanine-Derived Arene in Multitargeted Organoruthenium Compounds: Impact on the Antiproliferative Activity and Mode of Action. Inorganic Chemistry, 2018, 57, 8521-8529.	1.9	26
142	Mustards-Derived Terpyridine–Platinum Complexes as Anticancer Agents: DNA Alkylation vs Coordination. Inorganic Chemistry, 2021, 60, 2414-2424.	1.9	26
143	Ferrocenyl Paclitaxel and Docetaxel Derivatives: Impact of an Organometallic Moiety on the Mode of Action of Taxanes. Chemistry - A European Journal, 2016, 22, 11413-11421.	1.7	25
144	Coordination Chemistry of Organoruthenium Compounds with Benzoylthiourea Ligands and their Biological Properties. Chemistry - an Asian Journal, 2019, 14, 1262-1270.	1.7	25

#	Article	IF	CITATIONS
145	Biodistribution of antiâ€diabetic Zn(II) complexes in human serum and <i>in vitro</i> proteinâ€binding studies by means of CZE–ICPâ€MS. Electrophoresis, 2009, 30, 4075-4082.	1.3	24
146	Solution equilibria of anticancer ruthenium(II)-(η6-p-cymene)-hydroxy(thio)pyr(id)one complexes: Impact of sulfur vs. oxygen donor systems on the speciation and bioactivity. Journal of Inorganic Biochemistry, 2013, 127, 161-168.	1.5	24
147	Probing the Paradigm of Promiscuity for Nâ€Heterocyclic Carbene Complexes and their Protein Adduct Formation. Angewandte Chemie - International Edition, 2021, 60, 19928-19932.	7.2	24
148	Synthesis of ferrocenylglucose phosphonite and bisphosphinite: Pd(II) and Pt(II) complexes, Pd-catalyzed allylic alkylation. Tetrahedron, 2002, 58, 8489-8492.	1.0	23
149	Tumour-inhibiting platinum(ii) complexes with aminoalcohol ligands: biologically important transformations studied by micellar electrokinetic chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry. Analyst, The, 2005, 130, 1383.	1.7	23
150	Interactions of the carrier ligands of antidiabetic metal complexes with human serum albumin: A combined spectroscopic and separation approach with molecular modeling studies. Bioorganic and Medicinal Chemistry, 2011, 19, 4202-4210.	1.4	23
151	DNA damaging properties of single walled carbon nanotubes in human colon carcinoma cells. Nanotoxicology, 2013, 7, 2-20.	1.6	23
152	Influence of the ï€-coordinated arene on the anticancer activity of ruthenium(II) carbohydrate organometallic complexes. Frontiers in Chemistry, 2013, 1, 27.	1.8	23
153	Electrophoretic separation techniques and their hyphenation to mass spectrometry in biological inorganic chemistry. Electrophoresis, 2016, 37, 959-972.	1.3	23
154	Aspirin-inspired organometallic compounds: Structural characterization and cytotoxicity. Journal of Organometallic Chemistry, 2017, 839, 31-37.	0.8	23
155	Metalloproteomics for molecular target identification of protein-binding anticancer metallodrugs. Metallomics, 2020, 12, 1627-1636.	1.0	23
156	Phosphiteâ€Derivatized Rutheniumâ€Carbohydrate Complexes in the Catalytic Hydration of Nitriles. Short Communication. Chemistry and Biodiversity, 2008, 5, 1640-1644.	1.0	22
157	Capillary electrophoretic methods in the development of metalâ€based therapeutics and diagnostics: New methodology and applications. Electrophoresis, 2012, 33, 622-634.	1.3	22
158	Serum-binding properties of isosteric ruthenium and osmium anticancer agents elucidated by SEC–ICP–MS. Monatshefte Für Chemie, 2018, 149, 1719-1726.	0.9	22
159	A Multitargeted Approach: Organorhodium Anticancer Agent Based on Vorinostat as a Potent Histone Deacetylase Inhibitor. Angewandte Chemie - International Edition, 2020, 59, 14609-14614.	7.2	22
160	The Hydration of Chloroacetonitriles Catalyzed by Mono―and Dinuclear Ru ^{II} ―and Os ^{II} â€Arene Complexes. Chemistry and Biodiversity, 2008, 5, 2060-2066.	1.0	21
161	An Internal Fluorescent Probe Based on Anthracene to Evaluate Cation–Anion Interactions in Imidazolium Salts. Chemistry - A European Journal, 2010, 16, 6473-6481.	1.7	21
162	Flavonoidâ€Based Organometallics with Different Metal Centers – Investigations of the Effects on Reactivity and Cytotoxicity. European Journal of Inorganic Chemistry, 2016, 2016, 240-246.	1.0	21

#	Article	IF	CITATIONS
163	Metallomic study on the metabolism of RAPTA-C and cisplatin in cell culture medium and its impact on cell accumulation. Metallomics, 2018, 10, 455-462.	1.0	21
164	Solution equilibrium studies on anticancer ruthenium(II)–η6-p-cymene complexes of 3-hydroxy-2(1H)-pyridones. Journal of Organometallic Chemistry, 2013, 734, 38-44.	0.8	20
165	Advanced metallomics methods in anticancer metallodrug mode of action studies. TrAC - Trends in Analytical Chemistry, 2018, 104, 110-117.	5.8	19
166	Organometallic Ruthenium and Osmium Compounds of Pyridinâ€2―and â€4â€ones as Potential Anticancer Agents. Chemistry and Biodiversity, 2012, 9, 1718-1727.	1.0	17
167	Rhodium(Cp*) Compounds with Flavoneâ€derived Ligand Systems: Synthesis and Characterization. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1648-1654.	0.6	17
168	Synthesis and in vitro Biological Evaluation of Ferrocenyl Sideâ€Chainâ€Functionalized Paclitaxel Derivatives. ChemMedChem, 2017, 12, 1882-1892.	1.6	17
169	Glucose ferrocenyl-oxazolines: Coordination behavior toward [Pd(η3-allyl)Cl]2 studied by ESI-MS. Journal of Organometallic Chemistry, 2005, 690, 3301-3308.	0.8	16
170	Trapping Unstable Benzoquinone Analogues by Coordination to a [(η ⁵ ₅ Me ₅)Ir] Fragment and the Anticancer Activity of the Resulting Complexes. Angewandte Chemie - International Edition, 2010, 49, 8304-8305.	7.2	16
171	Capillary zone electrophoresis and capillary zone electrophoresis–electrospray ionization mass spectrometry studies on the behavior of anticancer cis- and trans-[dihalidobis(2-propanone) Tj ETQq1 1 0.78431	.4 ng8T /C)verløck 10 Tf
172	Influence of extracellular pH on the cytotoxicity, cellular accumulation, and DNA interaction of novel pH-sensitive 2-aminoalcoholatoplatinum(II) complexes. Journal of Biological Inorganic Chemistry, 2013, 18, 249-260.	1.1	16
173	Hybrid compounds from chalcone and 1,2-benzothiazine pharmacophores as selective inhibitors of alkaline phosphatase isozymes. European Journal of Medicinal Chemistry, 2018, 159, 282-291.	2.6	16
174	Expanding on the Structural Diversity of Flavone- Derived RutheniumII(Æž6-arene) Anticancer Agents. Metallodrugs, 2015, 1, .	1.7	15
175	Analysis of ruthenium anticancer agents by MEEKCâ€UV and MEEKC–ICPâ€MS: Impact of structural motifs on lipophilicity and biological activity. Electrophoresis, 2018, 39, 1201-1207.	1.3	15
176	1,1'-Bis(oxazolin-2-yl)ferrocenes: An Investigation of Their Complexation Behavior toward [Pd(?3-allyl)Cl]2. European Journal of Inorganic Chemistry, 2005, 2005, 1589-1600.	1.0	14
177	Synthesis and characterisation of the water soluble bis-phosphine complex [Ru(η6-cymene)(PPh2(o-C6H4O)-ΰ2-P,O)(pta)]+ and an investigation of its cytotoxic effects. Comptes Rendus Chimie, 2010, 13, 1144-1150.	0.2	14
178	A systematic capillary electrophoresis study on the effect of the buffer composition on the reactivity of the anticancer drug cisplatin to the DNA model 2′-deoxyguanosine 5′-monophosphate (dGMP). Analytical and Bioanalytical Chemistry, 2013, 405, 6417-6424.	1.9	14
179	Pt(II) pyridinium amidate (PYA) complexes: Preparation and in vitro anticancer activity studies. Inorganica Chimica Acta, 2016, 450, 124-130.	1.2	14
180	Ein Organorutheniumâ€Tumortherapeutikum mit unerwartet hoher Selektivitäfür Plectin. Angewandte Chemie, 2017, 129, 8379-8383.	1.6	14

#	Article	IF	CITATIONS
181	A Combined Spectroscopic and Protein Crystallography Study Reveals Protein Interactions of Rh ^I (NHC) Complexes at the Molecular Level. Inorganic Chemistry, 2020, 59, 17191-17199.	1.9	14
182	Solution equilibrium studies of anticancer ruthenium(II)-η6-p-cymene complexes of pyridinecarboxylic acids. Polyhedron, 2014, 67, 51-58.	1.0	13
183	Functionalization of Ruthenium(II)(Î- ⁶ â€ <i>p</i> â€eymene)(3â€hydroxyâ€2â€pyridone) Complexes (Thio)Morpholine: Synthesis and Bioanalytical Studies. ChemPlusChem, 2017, 82, 841-847.	with 1.3	13
184	13. ANTITUMOR METALLODRUGS THAT TARGET PROTEINS. , 2018, 18, 351-386.		13
185	Quinoline- <i>para</i> -quinones and metals: coordination-assisted formation of quinoline- <i>ortho</i> -quinones. Chemical Communications, 2018, 54, 992-995.	2.2	13
186	Understanding the interactions of diruthenium anticancer agents with amino acids. Journal of Biological Inorganic Chemistry, 2018, 23, 1159-1164.	1.1	13
187	Physicochemical studies on the copper(<scp>ii</scp>) binding by glycated collagen telopeptides. Organic and Biomolecular Chemistry, 2015, 13, 3058-3063.	1.5	12
188	The rearrangement of tosylated flavones to 1′-(alkylamino)aurones with primary amines. Tetrahedron, 2015, 71, 8953-8959.	1.0	12
189	Organoruthenium and Organoosmium Complexes of 2â€Pyridinecarbothioamides Functionalized with a Sulfonamide Motif: Synthesis, Cytotoxicity and Biomolecule Interactions. ChemPlusChem, 2018, 83, 612-619.	1.3	12
190	Anthracenyl Functionalization of Half-Sandwich Carbene Complexes: In Vitro Anticancer Activity and Reactions with Biomolecules. Inorganic Chemistry, 2021, 60, 14636-14644.	1.9	12
191	Incorporation of βâ€Alanine in Cu(II) ATCUN Peptide Complexes Increases ROS Levels, DNA Cleavage and Antiproliferative Activity**. Chemistry - A European Journal, 2021, 27, 18093-18102.	1.7	12
192	Efficiently Detecting Metallodrug–Protein Adducts: Ion Trap versus Timeâ€ofâ€Flight Mass Analyzers. ChemMedChem, 2014, 9, 1351-1355.	1.6	11
193	Metal-Dependent Cytotoxic and Kinesin Spindle Protein Inhibitory Activity of Ru, Os, Rh, and Ir Half-Sandwich Complexes of Ispinesib-Derived Ligands. Inorganic Chemistry, 2020, 59, 14879-14890.	1.9	11
194	Impact of the Metal Center and Leaving Group on the Anticancer Activity of Organometallic Complexes of Pyridine-2-carbothioamide. Molecules, 2021, 26, 833.	1.7	11
195	Methyl-substituted trans-1,2-cyclohexanediamines as new ligands for oxaliplatin-type complexes. Tetrahedron, 2008, 64, 137-146.	1.0	10
196	A one step/one pot synthesis of N,N-bis(phosphonomethyl)amino acids and their effects on adipogenic and osteogenic differentiation of human mesenchymal stem cells. Bioorganic and Medicinal Chemistry, 2009, 17, 3388-3393.	1.4	10
197	Synthesis of [Rull(η6-p-cymene)(PPh3)(L)Cl]PF6 complexes with carbohydrate-derived phosphites, imidazole or indazole co-ligands. Inorganica Chimica Acta, 2012, 380, 211-215.	1.2	10
198	Cytostatic Action of Novel Histone Deacetylase Inhibitors in Androgen Receptor-Null Prostate Cancer Cells. Pharmaceuticals, 2021, 14, 103.	1.7	10

#	Article	IF	CITATIONS
199	Heterotrimetallic Double Cavity Cages: Syntheses and Selective Guest Binding. Angewandte Chemie, 2022, 134, .	1.6	10
200	Capillary electrophoresis in metallodrug development. Drug Discovery Today: Technologies, 2015, 16, 16-22.	4.0	9
201	Thiourea-Derived Chelating Ligands and Their Organometallic Compounds: Investigations into Their Anticancer Activity. Molecules, 2020, 25, 3661.	1.7	9
202	Synthesis, crystal structures, and electrospray ionisation mass spectrometry investigations of ether- and thioether-substituted ferrocenes. Dalton Transactions, 2003, , 3098.	1.6	8
203	High Antiproliferative Activity of Hydroxythiopyridones over Hydroxypyridones and Their Organoruthenium Complexes. Biomedicines, 2021, 9, 123.	1.4	8
204	1,1,3,3-Tetramethyl-1,3-disila-2-oxa[3]ferrocenophane: improved synthesis and new crystal structure. Inorganica Chimica Acta, 2002, 328, 237-240.	1.2	7
205	Aqueous chemistry and antiproliferative activity of a pyrone-based phosphoramidate Ru(arene) anticancer agent. Dalton Transactions, 2014, 43, 9851.	1.6	7
206	13. Antitumor Metallodrugs that Target Proteins. , 2018, 18, 351-386.		7
207	Hyphenation of capillary electrophoresis to inductively coupled plasma mass spectrometry with a modified coaxial sheath-flow interface. Journal of Chromatography A, 2018, 1561, 76-82.	1.8	7
208	Heptadentate, Octadentate, Or Even Nonadentate? Denticity in the Unexpected Formation of an All-Carbon Donor-Atom Ligand in Rh ^{III} (Cp*)(Anthracenyl-NHC) Complexes. Inorganic Chemistry, 2021, 60, 8734-8741.	1.9	7
209	Triazolylâ€Functionalized N â€Heterocyclic Carbene Halfâ€Sandwich Compounds: Coordination Mode, Reactivity and in vitro Anticancer Activity. ChemMedChem, 2021, 16, 3017-3026.	1.6	7
210	Substitution of the chlorido ligand for PPh3 in anticancer organoruthenium complexes of sulfonamide-functionalized pyridine-2-carbothioamides leads to high cytotoxic activity. Inorganica Chimica Acta, 2022, 536, 120889.	1.2	7
211	Bis- and tris-bicyclophosphites of d-glucofuranoside. Unexpected catalysis of P(III/V)-oxidation by triethylamine. Tetrahedron, 2005, 61, 10943-10950.	1.0	6
212	Electrospray ionization mass spectrometric study on the coordination behavior of dacarbazine towards transition metal ions. Polyhedron, 2006, 25, 1971-1978.	1.0	6
213	Gel electrophoresis in combination with laser ablation–inductively coupled plasma mass spectrometry to quantify the interaction of cisplatin with human serum albumin. Electrophoresis, 2019, 40, 2329-2335.	1.3	6
214	Tracing the anticancer compound [Ru ^{II} (η ⁶ - <i>p</i> -cymene)(8-oxyquinolinato)Cl] in a biological environment by mass spectrometric methods. Analytical Methods, 2021, 13, 1463-1469.	1.3	6
215	Dinuclear orthometallated gold(I)-gold(III) anticancer complexes with potent <i>in vivo</i> activity through an ROS-dependent mechanism. Metallomics, 2021, 13, .	1.0	6
216	Anti-Proliferative, Anti-Angiogenic and Safety Profiles of Novel HDAC Inhibitors for the Treatment of Metastatic Castration-Resistant Prostate Cancer. Pharmaceuticals, 2021, 14, 1020.	1.7	6

#	Article	IF	CITATIONS
217	Impact of the ferrocenyl group on cytotoxicity and KSP inhibitory activity of ferrocenyl monastrol conjugates. Dalton Transactions, 2022, 51, 491-508.	1.6	6
218	Linked Metal-cluster Systems: Isolation and Characterisation of {anti-[(p-cymene)RuCl]-μ-[κ 2-P,P′;κ 1-P′′-(PPh2CH2)3CMe]-[AuPt3(CO)3(PCy3)3]}(PF6)2. Journal of Cluster Science, 2008, 19, 295-309.	1.7	5
219	In-flow SAXS investigation of whey protein isolate hydrolyzed by bromelain. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127662.	2.3	5
220	Cobalt complexes as internal standards for capillary zone electrophoresis–mass spectrometry studies in biological inorganic chemistry. Journal of Biological Inorganic Chemistry, 2017, 22, 789-798.	1.1	4
221	Medicinal Chemistry. , 2019, , 157-172.		4
222	From the hypothesis-driven development of organometallic anticancer drugs to new methods in mode of action studies. Advances in Inorganic Chemistry, 2020, 75, 339-359.	0.4	4
223	Homodinuclear organometallics of ditopic N,N-chelates: Synthesis, reactivity and in vitro anticancer activity. Inorganica Chimica Acta, 2021, 518, 120220.	1.2	4
224	A Multitargeted Approach: Organorhodium Anticancer Agent Based on Vorinostat as a Potent Histone Deacetylase Inhibitor. Angewandte Chemie, 2020, 132, 14717-14722.	1.6	4
225	Comparative solution studies and cytotoxicity of gallium(III) and iron(III) complexes of 3-hydroxy-2(1H)-pyridinones. Polyhedron, 2019, 172, 141-147.	1.0	3
226	Carbon monoxide is an inhibitor of HIF prolyl hydroxylase domain 2. ChemBioChem, 2021, 22, 2521-2525.	1.3	3
227	Synthetic Strategy Towards Heterodimetallic Half-Sandwich Complexes Based on a Symmetric Ditopic Ligand. Frontiers in Chemistry, 2021, 9, 786367.	1.8	3
228	A Solid Supportâ€Based Synthetic Strategy for the Siteâ€Selective Functionalization of Peptides with Organometallic Halfâ€Sandwich Moieties. Chemistry - A European Journal, 2021, , .	1.7	3
229	On the Coordination Properties of New Bicyclophosphite-Carbohydrates. Monatshefte Für Chemie, 2005, 136, 137-146.	0.9	2
230	Reprint of: Pt(II) pyridinium amidate (PYA) complexes: Preparation and in vitro anticancer activity studies. Inorganica Chimica Acta, 2017, 454, 247-253.	1.2	2
231	Cavity-Containing [Fe2L3]4+ Helicates: An Examination of Host-Guest Chemistry and Cytotoxicity. Frontiers in Chemistry, 2021, 9, 697684.	1.8	2
232	5-Hydroxy-2-methyl-4H-pyran-4-one. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o437-o437.	0.2	2
233	Probing the Paradigm of Promiscuity for Nâ€Heterocyclic Carbene Complexes and their Protein Adduct Formation. Angewandte Chemie, 2021, 133, 20081-20085.	1.6	1
234	Determination of Relative Stabilities of Metalâ€Peptide Bonds in the Gas Phase. Chemistry - A European Journal. 2021. 27. 16401-16406.	1.7	1

#	Article	IF	CITATIONS
235	Crystallographic report: Crystal structure of 1-bromo-1?-[(2S)-N-(1-hydroxy-3-methylbutane-2-yl)]-ferroceneamide. Applied Organometallic Chemistry, 2003, 17, 723-724.	1.7	0

236 Editorial [Hot Topic: Metal Containing Complexes with Anticancer Properties (Guest Editors: A.) Tj ETQq0 0 0 rgBT [Overlock]0 Tf 50 70

237	Innenrücktitelbild: Ein Organorutheniumâ€Tumortherapeutikum mit unerwartet hoher Selektivitäfür Plectin (Angew. Chem. 28/2017). Angewandte Chemie, 2017, 129, 8415-8415.	1.6	0
238	AsBIC8 –8th Asia/Pacific Biological Inorganic Chemistry Conference. Journal of Inorganic Biochemistry, 2017, 177, 248.	1.5	0
239	8th Asian Biological Inorganic Chemistry Conference. Journal of Biological Inorganic Chemistry, 2017, 22, 637-638.	1.1	0
240	The Analysis of Therapeutic Metal Complexes and Their Biomolecular Interactions. , 2017, , 355-386.		0
241	Organometallics in Cancer Treatment—Non-conventional Structures and Modes of Action. , 2018, , .		0
242	Design of organoruthenium complexes for nanoparticle functionalization. Journal of Organometallic Chemistry, 2019, 891, 64-71.	0.8	0
243	N-(4-Benzoylphenyl)pyridine-2-carbothioamide. IUCrData, 2016, 1, .	0.1	0