Satoshi Iwamoto

List of Publications by Year in descending order

[^0]1 Synthetic dimension band structures on a Si CMOS photonic platform. Science Advances, 2022, 8,12.82812 Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond. Applied PhysicsLetters, 2021, 118, .
3.3

Emission at 1.6 â€\%ô¹⁄4m from InAs Quantum Dots in Metamorphic InGaAs Matrix. Physica Status Solidi (B): Basic Research, 2020, 257, 1900392.
$1.5 \quad 7$

Reflectivity of three-dimensional GaAs photonic band-gap crystals of finite thickness. Physical Review

<i>In situ</i> wavelength tuning of quantum-dot single-photon sources integrated on a
CMOS-processed silicon waveguide. Applied Physics Letters, 2020, 116, .
27 Slow Light Waveguide Based on Topological Edge States in Valley Photonic Crystals. , 2020, , .0
Strong coupling between a single quantum dot and an L4/3 photonic crystal nanocavity. AppliedPhysics Express, 2020, 13, 082009.
$2.4 \quad 2$
29 Efficient single photon sources transfer-printed on Si with unidirectional light output. , 2020, , .0
$30 \quad$ Valley anisotropy in elastic metamaterials. Physical Review B, 2019, 100, .3.225
Photoluminescence properties as a function of growth mechanism for GaSb/GaAs quantum dots2.5
Spin-dependent directional emission from a quantum dot ensemble embedded in an asymmetric
waveguide. Optics Letters, 2019, 44, 3749.

Three-dimensional photonic crystal simultaneously integrating a nanocavity laser and waveguides.
9.3

20

9.3
$39 \quad$ Photonic crystal nanocavity based on a topological corner state. Optica, 2019, 6, 786. $\quad 9.3$

40 Advances in Quantum Dot Lasers for High Efficiency and High Output Power Operation. The Review of

47	Large vacuum Rabi splitting between a single quantum dot and an HO photonic crystal nanocavity. Applied Physics Letters, 2018, 112, .	3.3	27
48	Topologically protected elastic waves in one-dimensional phononic crystals of continuous media. Applied Physics Express, 2018, 11, 017201.	2.4	27
49	Enhanced photoelastic modulation in silica phononic crystal cavities. Japanese Journal of Applied Physics, 2018, 57, 042002.	1.5	0

$50 \quad$ Topological photonic crystal nanocavity laser. Communications Physics, 2018, 1,. 5.3
InAs/GaAs quantum dot infrared photodetectors on onấeaxis Si (100) substrates. Electronics Letters,
$2018,54,1395-1397$.

Circularly Polarized Topological Edge States Derived from Optical Weyl Points in

52	Semiconductor-Based Chiral Woodpile Photonic Crystals. Journal of the Physical Society of Japan, $2018,87,123401$.

Two dimensional photonic crystal nanocavities with InAs/GaAs quantum dot active regions embedded
by MBE regrowth. Japanese Journal of Applied Physics, 2018, 57, 08 PD03.

```
5 5 ~ H i g h a ̂ € \bullet < i > Q < / i > ~ n a n o c a v i t i e s ~ i n ~ s e m i c o n d u c t o r a ̂ € b a s e d ~ t h r e e a ̂ € d i m e n s i o n a l ~ p h o t o n i c ~ c r y s t a l s . ~ E l e c t r o n i c s ~
Letters, 2018, 54, 305-307.
```

$1.0 \quad 6$

Advanced Photonic Crystal Nanocavity Quantum Dot Lasers. IEICE Transactions on Electronics, 2018, El01.C, 553-560.
Phonon Lifetime Observation in Epitaxial ScN Film with Inelastic X-Ray Scattering Spectroscopy.
Physical Review Letters, 2018, 120, 235901 .

$60 \quad$| Observation of infrared absorption of InAs quantum dot structures in AlGaAs matrix toward |
| :--- |
| high-efficiency solar cells. Japanese Journal of Applied Physics, 2018, 57, 062001. |

61 Transfer-printed quantum-dot nanolasers on a silicon photonic circuit. Applied Physics Express, 2018,

Scheme for media conversion between electronic spin and photonic orbital angular momentum based on photonic nanocavity. Optics Express, 2018, 26, 21219.
Growth of InGaAs/GaAs nanowire-quantum dots on AlGaAs/GaAs distributed Bragg reflectors for

laser applications. Journal of Crystal Growth, 2017, 468, 144-148. \quad\begin{tabular}{ll}
Enhanced optical Stark shifts in a single quantum dot embedded in an H1 photonic crystal nanocavity.

\quad

13
\end{tabular}

```
73 Method for generating a photonic NOON state with quantum dots in coupled nanocavities. Physical
73 Review A, 2017, 96,.
```

2.5
15

74 Circularly polarized vacuum field in three-dimensional chiral photonic crystals probed by quantum dot emission. Physical Review B, 2017, 96, .
3.2

13

UV/Ozone-assisted bonding for InAs/GaAs quantum dot lasers on Si. , 2017, , .
1

76 A photonic crystal nanocavity with a quantum dot active region embedded by MBE regrowth. , 2017, , .
1

```
77 Imaging of topologically protected elastic mode in silica 1D phononic crystal via photoelastic effect. ,
2017, ,.
```

78 Thresholdless quantum dot nanolaser. Optics Express, 2017, 25, 19981.

80 Guiding of laser light from a nanocavity in a three-dimensional photonic crystal. , 2017, , .
81 Time-Domain Observation of Vacuum Rabi Oscillations in a Strongly Coupled Quantum Dot-Nanocavity System. , 2017, , 0
82 Thresholdless lasing with quantum dot gain. , 2017, , 0
83 Tensile strain engineering of germanium micro-disks on free-standing $\mathrm{SiO}<\mathrm{sub}\rangle 2$ </sub > beams. Japanese Journal of Applied Physics, 2016, 55, 04EH02. 1.5 14
Semiconductor Three-Dimensional Photonic Crystals with Novel Layer-by-Layer Structures. Photonics, 2016, $3,34$. 2.0 6
84diffusion of phosphorus. Physica Status Solidi (B): Basic Research, 2016, 253, 659-663.InAs/GaAs quantum dot lasers with GaP strain-compensation layers grown by molecular beam epitaxy.Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 958-964.$1.8 \quad 8$
<mml:math
xmlns:mml="http:/|www.w3.org/1998/Math/MathML">mml:mip</mml:mi></mml:math>-shell carrier
assisted dynamic nuclear spin polarization in single quantum dots at zero external magnetic field.
Physical Review B, 2016, 93,.
Physical Review B, 2016, 93,
99 Control of Light Polarization using Photonic and Phononic Crystals. , 2016, , 0
$101 \begin{aligned} & \text { Influence of the rela } \\ & \text { strength. , 2015, ,. }\end{aligned}$ 0
Eigenvalue decomposition method for photon statistics of frequency-filtered fields and itsapplication to quantum dot emitters. Physical Review A, 2015, 92, .

```
109 Effect of metal side claddings on emission decay rate of single quantum dots embedded in a
subwavelength semiconductor waveguide., 2015, , .
```

110 Fabrication of Ge micro-disks on free-standing SiO2 beams for monolithic light emission. , 2015, , .
1

```
111 Low-Threshold near-Infrared GaAsâ€"AlGaAs Coreâ€"Shell Nanowire Plasmon Laser. ACS Photonics, 2015,
6.6
\(6.6-92\)
```


111 2, 165-171.

7.8

31

113 Room-temperature lasing in a single nanowire with quantum dots. Nature Photonics, 2015, 9, 501-505.
31.4

159

114 Spin-on doping of germanium-on-insulator wafers for monolithic light sources on silicon. Japanese Journal of Applied Physics, 2015, 54, 052101.
1.5

8
112 Vacuum Rabi Spectra of a Single Quantum Emitter. Physical Review Letters, 2015, 114, 143603.
115 InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Wafer Bonding. IEEE
High quality-factor $\mathrm{Si} / \mathrm{SiO}$ _2-InP hybrid micropillar cavities with
telecommunication band. Optics Express, 2015, 23, 16264 .
$117 \quad \begin{aligned} & \text { Room-te } \\ & 2015,, .\end{aligned}$2.5261
118 Asymmetric out-of-plane power distribution in a two-dimensional photonic crystal nanocavity. Optics Letters, 2015, 40, 3372.
119 Germanium Photonic Crystal Nanobeam Cavity with Q \> 1,300. , 2015, , .1
1.3-1̂1/4m InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Bonding. , 2015, 0
120
,.Single Emitter Vacuum Rabi Splitting Measured Through Direct Free Space Spontaneous Emission. ,2015, , .0
Temperature dependency of the emission properties from positioned $\ln (\mathrm{Ga}) \mathrm{As} / \mathrm{GaAs}$ quantum dots. AIPMeasurement of the Second Order Coherence of a Nanolaser Through Its Intra-cavity Second0
123 Harmonic Generation. , 2014, , .
Design of efficient surface plasmon polariton modulators using graphene. Japanese Journal of Applied

Impact of the dark path on quantum dot single photon emitters in small cavities. Physical Review
Letters, 2014, 113, 143604. Letters, 2014, 113, 143604.

Highly uniform, multi-stacked InGaAs/GaAs quantum dots embedded in a GaAs nanowire. Applied Physics Letters, 2014, 105, .
3.3

Design of a three-dimensional photonic crystal nanocavity based on a \$langle 110angle \$-layered diamond structure. Japanese Journal of Applied Physics, 2014, 53, 04EG08.
1.5
$130 \operatorname{InAs} / G a A s$ quantum dot lasers metal-stripe-bonded onto SOI substrate., 2014, , .
1

Measuring the second-order coherence of a nanolaser by intracavity frequency doubling. Physical
Review A, 2014, 89, .

Group IV Light Sources to Enable the Convergence of Photonics and Electronics. Frontiers in
Materials, 2014, 1, .

Design of slow-light grating waveguides for silicon Raman amplifier. , 2013, , .
2

Growth of highâ€quality InAs quantum dots embedded in GaAs nanowire structures on Si substrates.
Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1496-1499.

Improvement of photoluminescence from ge waveguides fabricated by low temperature selective epitaxial growth and rapid thermal annealing. , 2013, , .

Self-frequency summing in photonic crystal nanocavity quantum dot lasers. , 2013, , .

137 Nonlinear photonics in single quantum dot-photonic crystal nanocavity couples systems. , 2013, , .
0

Rim formation on non-elongated InAs quantum dots grown by partial cap and annealing process at
low temperature. Journal of Crystal Growth, 2013, 378, 558-561.

Non-VLS growth of GaAs nanowires on silicon by a gallium pre-deposition technique. Journal of
Crystal Growth, 2013, 378, 562-565.

140 Large vacuum Rabi splitting in an H0 photonic crystal nanocavity-quantum dot system. , 2013, , .
o

Formation and optical properties of multi-stack $\ln G a A s$ quantum dots embedded in GaAs nanowires by selective metalorganic chemical vapor deposition. Journal of Crystal Growth, 2013, 370, 299-302.

Shape evolution of low density InAs quantum dots in the partial capping process by using As2 source. Journal of Crystal Growth, 2013, 378, 549-552.

Design of large-bandwidth single-mode operation waveguides in silicon three-dimensional photonic crystals using two guided modes. Optics Express, 2013, 21, 12443.

$145 \quad$| Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal. Optics Express, |
| :--- |
| $2013,21,29905$. |

$146 \quad$| Design of $\mathrm{Si} / \mathrm{SiO}_{2} 2$ micropillar cavities for Purcell-enhanced single photon emission at 155 Â̂̂1/4m from |
| :--- |
| InAs/InP quantum dots. Optics Letters, 2013, 38, 3241. |

$147 \quad$| Wide range Q-factor control in a photonic crystal nanobeam cavity incorporating quantum dots. , |
| :--- |
| $2013, \ldots$ |

Design of Silicon Photonic Crystal Waveguides for High Gain Raman Amplification Using Two
148 Symmetric Transvers-Electric-Like Slow-Light Modes. Japanese Journal of Applied Physics, 2013, 52, 4 04CG03.

149 Self-frequency summing in quantum dot photonic crystal nanocavity lasers. Applied Physics Letters,
149 2013, 103, 243115.

Electro-Mechanical Q Factor Control of Photonic Crystal Nanobeam Cavity. Japanese Journal of
150 Electro-Mechanical Q Factor Control
1.5

0

6

151. Enhancement of Valence Band Mixing in Individual InAs/GaAs Quantum Dots by Rapid Thermal Annealing. Japanese Journal of Applied Physics, 2013, 52, 125001.

1.5

Multi-color visible light generation by self-frequency doubling in photonic crystal nanocavity quantum dot lasers. , 2013, , .

Design of highâ $€<i>Q</ i>$ nanocavity in threeâ€dimensional woodpile photonic crystal with vertically
153 mirrorâ€symmetric structure. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1457-1460.
0.8

0
1457-1460. 153 (2013,10 , 2

Highâ€ $<i>Q</ i>A l N$ ladderâ€structure photonic crystal nanocavity fabricated by layer transfer. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1517-1520.
0.8

5

> 155 Cavity Quantum Electrodynamics in Semiconductors: Quantum Dot-Photonic Crystal Nanocavity Coupled Systems. The Review of Laser Engineering, 2013, 41, 485 .
$0.0 \quad 0$

A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands. New Journal of Physics, 2012, 14, 083035.
2.9

11

157 metalorganic chemical vapor deposition for application to single photon sources. Materials Research
0.1

0 Society Symposia Proceedings, 2012, 1439, 115-119.

158 Fabrication of AlGaN Two-Dimensional Photonic Crystal Nanocavities by Selective Thermal
2.4

38 Decomposition of GaN. Applied Physics Express, 2012, 5, 126502.
1.50

Wavelength Tunable Quantum Dot Single-Photon Source with a Side Gate. Japanese Journal of Applied
Physics, 2012, 51, 02BJ05.
1.5

High Q H1 photonic crystal nanocavities with efficient vertical emission. Optics Express, 2012, 20, 28292.

163	Site-controlled formation of $\operatorname{InAs} / G a A s$ quantum-dot-in-nanowires for single photon emitters. Applied Physics Letters, 2012, 100, .	3.3	47
164	Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities. Applied Physics Letters, 2012, 101, 141124.	3.3	53
165	High-Q (\>5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots. Applied Physics Letters, 2012, 100,	3.3	24
166	Optical Properties of Site-Controlled InGaAs Quantum Dots Embedded in GaAs Nanowires by Selective Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 11 PE13.	1.5	1
167	1.3 â $€ \%{ }_{\circ} 1 / 1 / 4 \mathrm{~m} \operatorname{InAs} / \mathrm{GaAs}$ quantum dot lasers on Si substrates by low-resistivity, Au-free metal-mediated wafer bonding. Journal of Applied Physics, 2012, 112, 033107.	2.5	13
168	Enhancement of Light Emission from Silicon by Utilizing Photonic Nanostructures. IEICE Transactions on Electronics, 2012, E95-C, 206-212.	0.6	5
169	Silicon-based three-dimensional photonic crystal nanocavity laser with InAs quantum-dot gain. Applied Physics Letters, 2012, 101, .	3.3	8

170 Intra-cavity frequency doubling in photonic crystal nanocavity quantum dot lasers. , 2012, , 1
171 Single quantum dot-photonic crystal nanocavity laser. , 2012, , 0
Cavity Quantum Electrodynamics and Lasing Oscillation in Single Quantum Dot-Photonic Crystal
172 Nanocavity Coupled Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1818-1829.
173 High-<i>Q<|i> AlN photonic crystal nanobeam cavities fabricated by layer transfer. Applied Physics Letters, 2012, 101, 3.3 29
Influence of p-doping on the temperature dependence of $\operatorname{In} A s / G a A s$ quantum dot excited state radiative 3.3 6 lifetime. Applied Physics Letters, 2012, 101, .
.5
175 Wavelength Tunable Quantum Dot Single-Photon Source with a Side Gate. Japanese Journal of Applied1.52
Optical Properties of Site-Controlled InGaAs Quantum Dots Embedded in GaAs Nanowires by Selective1.52
Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 11 PE13.$1.5 \quad 2$
Proposal and design of III-V/Si hybrid lasers with current injection across conductive wafer-bonded 0Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities.Applied Physics Letters, 2011, 98, .

181 Lasing Characteristics of a Quantum-Dot-3D-Photonic-Crystal-Nanocavity Coupled System: Interaction

Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap. Nature Photonics, 2011, 5, 91-94.
31.4

173

183 Spontaneous Two-Photon Emission from a Single Quantum Dot. Physical Review Letters, 2011, 107, 233602.

New method to isolate and distribute photoluminescence emissions from $\ln A s$ quantum dots over a
Effects of growth temperature of partial GaAs cap on InAs quantum dots in Inâ€flush process for single
dot spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 248-250.

> Fabrication of high-Q silicon-based three-dimensional photonic crystal nanocavity and its lasing oscillation with InAs ouantum-dot gain.. 2011 . oscillation with InAs quantum-dot gain. , 2011, , .

189 Observation of Purcell effect in a 3D photonic crystal nanocavity with a single quantum dot. , 2011, , . 1

Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot. Applied
Physics Letters, 2011, 98, .
$3.3 \quad 84$

191 Competing influence of an in-plane electric field on the Stark shifts in a semiconductor quantum dot.
Applied Physics Letters, 2011, 99, 181109.
$3.3 \quad 5$

Neutralization of positively charged excitonic state in single InAs quantum dot by Si delta doping.
Journal of Physics: Conference Series, 2010, 245, 012088.
0.4

7
199 Enhancement of photoluminescence from germanium by utilizing air-bridge-type
2.7 8
Laser oscillation in a strongly coupled single-quantum-dotâ€"nanocavity system. Nature Physics, 2010, 6, 279-283. 200
201 Spin dynamics of excited trion states in a single InAs quantum dot. Physical Review B, 2010, 81, 3.2 14
202 Switching operation of lasing wavelength in mid-infrared ridge-waveguide quantum cascade lasers 3.3 10 coupled with microcylindrical cavity. Applied Physics Letters, 2010, 96, .
203 Zero-cell photonic crystal nanocavity laser with quantum dot gain. Applied Physics Letters, 2010, 97, 3.3 19
204 High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity. Optics Express, 2010, 18, 8144.3.443
205 Electrically pumped 13 ̂̂1/4m room-temperature $\operatorname{InAs} / G a A s$ quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer. Optics Express, 2010, 18, 10604. 3.4 84
206 Single quantum dot laser using photonic crystal nanocavity. , 2010, , .0
207 Demonstration of a Silicon photonic Crystal Slab LED with Efficient Electroluminescence. , 2010, , 3
208 Lasing Oscillation in a Three-Dimensional Photonic Crystal Nanocavity with Quantum Dots. , 2010, , 0
209 Circularly-Polarized Light Emission from Semiconductor Planar Chiral Photonic Crystals. , 2010, , 0
210 Single Quantum Dot Laser with Photonic Crystal Nanocavity. , 2009, , 0
211 Light-matter interaction in single quantum dot with photonic crystal nanocavity. , 2009, , 0Vacuum Rabi splitting with a single quantum dot embedded in a H 1 photonic crystal nanocavity. Applied

217	Photonic band-edge micro lasers with quantum dot gain. Optics Express, 2009, 17, 640.	
218	Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate. Optics Express, 2009, 17, 7036.	3.4
219	55	

220 Photonic crystal nanocavity lasers with InAs quantum dots bonded onto silicon substrates. , 2009, , .

223 Ultra-low threshold photonic crystal nanocavity laser. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1800-1803.

$2.7 \quad 21$
Observation of very narrow fine-structure splittings in self-assembled quantum dots by 224 photocurrent spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2.7
0 2192-2194.
225 Coupling of quantum-dot light emissi 31.4 166
Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap
$230 \quad \begin{aligned} & \text { Delivery } \\ & 2008, \text {,. }\end{aligned}$0
231 Microcylinder quantum cascade laser coupled with an optical waveguide. , 2008, , 0Coupling of quantum dot light emission with point defect cavity resonances in three-dimensional
photonic crystals. , 2008, , .0photonic crystals. , 2008, , .
Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity. Applied Physics Letters, 2008, 93, 183114.
235 Ge dots in Optical Microcavities--A Possible Direction for Silicon-based Light Emitting Devices. ECS Transactions, 2008, 16, 857-864.

Efficient excitation and emission of single quantum dot by simultaneous coupling to two different photonic crystal nanocavity modes. , 2008, , .

0
237 Achievement of ultra-low threshold excitation power (8 nW) in a nearly-single quantum dot nanocavity laser. , 2008, , .0

238 Design of Surface-Emitting Photonic Crystal Microcavitis for Quantum Cascade Lasers. , 2007, , . 0
239 Fabrication of photonic crystal nanocavity for generating entangled photon pairs using quantum dots. , 2007, , 0
Fabrication and characterization of photonic crystal nanocavity with degenerated cavity modes for 0
generating entangled photon pairs using quantum dots. , 2007, , . 240AlN air-bridge photonic crystal nanocavities demonstrating high quality factor. Applied PhysicsAlN air-bridge photonic crys
Letters, 2007, 91, 051106.
3.3 55
Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at roomtemperature. Applied Physics Letters, 2007, 91, .
243 Demonstration of High-Q Photonic Crystal H1-defect Nanocavities after Closing of Photonic Bandgap. , 2007, , .0
244 Arrayed 3D Photonic Crystals for Optical Communication Wavelengths. , 2007, , .0
245 Photonic crystal nanocavity lasers with quantum dots. Proceedings of SPIE, 2007, , 0.8 0
246 Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling3.249factor. Physical Review B, 2007, 75, .

Photonic Crystal Nanocavity for Highly Efficient Lasers and Light Sources. Conference Proceedings -

Photonic Crystal Nanocavity for Highly Efficient Lasers and Light Sources. Conference Proceedings -

Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .

Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , 0
0.0
0.0 247 2470
Demonstration of High-Q Photonic Crystal H1-defect Nanocavities after Closing of Photonic Bandgap.
, 2007, , . 248
Selective Excitation of a Single Quantum Dot in a Photonic Crystal Nanocavity by using Cavity 0.4 0
249 Resonance. AIP Conference Proceedings, 2007, , .
Room temperature continuous-wave lasing in photonic crystal nanocavity. Optics Express, 2006, 14,
6308 .255 Development of high-yield fabrication technique for MEMS-PhC devices. IEICE Electronics Express,
Fabrication of Rod-Connected Diamond Structures at Optical Wavelengths by Micromanipulation. , 2006, , .
257 Advances in photonic crystals with MEMS and with semiconductor quantum dots. Laser Physics, 2006, 1.2 3
Development of Electrically Driven Single-Quantum-Dot Device at Optical Fiber Bands. Japanese Journalof Applied Physics, 2006, 45, 3621-3624.
259 Enhancement of light emission from single quantum dot in photonic crystal nanocavity by using3.321
Highly efficient optical pumping of photonic crystal nanocavity lasers using cavity resonant excitation. Applied Physics Letters, 2006, 89, 161111.
261 Observation of micromechanically controlled tuning of photonic crystal line-defect waveguide.3.319
Applied Physics Letters, 2006, 88, 011104.
0.00
Organic Light-Emitting Devices Using Photonic Crystals. The Review of Laser Engineering, 2006, 34,
767-772.
1.50
$263 \begin{aligned} & \text { Resonant-Wavelength Control in Visible-Light Range of Org } \\ & \text { Japanese Journal of Applied Physics, 2006, 45, 6112-6115. }\end{aligned}$.0
264 Microdisk lasers: quantum dot lasing and bistability. , 2005, , .0
265 1.55-1¹/4m light emission from InAs QDs embedded in a high-Q photonic crystal microcavity. , 2005, , 0
266 Single dot spectroscopy of GaN/AlN self-assembled quantum dots. AIP Conference Proceedings, 2005, , 0.4 0
267 Functional Imaging Using InGaAs/GaAs Photorefractive Multiple Quantum Wells. AIP Conference 0.4 0
Proceedings, 2005, , .InAsSb Quantum Dots Grown on GaAs Substrates by Molecular Beam Epitaxy. Japanese Journal of1.513

273	Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding. Optics Express, 2005, 13, 1615.	3.4	44
274	Enhancement of Cavity-Qin a Quasi-Three-Dimensional Photonic Crystal. Japanese Journal of Applied Physics, 2004, 43, 1990-1994.	1.5	8
275	Lasing characteristics of InAs quantum-dot microdisk from 3 K to room temperature. Applied Physics Letters, 2004, 85, 1326-1328.	3.3	30
276	Picosecond dynamics of spin-related optical nonlinearities in InxGalâ^’ \times As multiple quantum wells at 1064 nm. Applied Physics Letters, 2004, 84, 1043-1045.	3.3	7
277	Numerical analysis of DFB lasing action in photonic crystals with quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 814-819.	2.7	3
278	Simultaneous determination of the index and absorption gratings in multiple quantum well photorefractive devices designed for laser ultrasonic sensor. Optics Communications, 2004, 242, 7-12.	2.1	8
279	Long-wavelength luminescence from GaSb quantum dots grown on GaAs substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 275-278.	2.7	13
280	Exciton and biexciton luminescence from single hexagonal GaNâ^•AlN self-assembled quantum dots. Applied Physics Letters, 2004, 85, 64-66.	3.3	92
281	Spin and carrier relaxation in resonantly excited InGaAs MQWs. Semiconductor Science and Technology, 2004, 19, S339-S341.	2.0	7

282 Control of light propagation and localization in a photonic crystal slab by using a micromechanical
actuator., 2004, , .

283 | Optical Characteristics of Two-Dimensional Photonic Crystal Slab Nanocavities with Self-Assembled |
| :--- |
| InAs Quantum Dots for 1.3 Âum Light Emission. Japanese Journal of Applied Physics, 2003, 42, 2391-2394. |

284 Semiconductor multiple quantum-well photorefractive devices for vibration measurement. , 2002, , .
o

```
285 Low-coherence photorefractive holography for high-speed 3D imaging including through scattering
media., 2002, 4619, }98
```

Photorefractive Materials and Their Applications. Semiconductor Photorefractive Quantum Wells and Their Applications.. The Review of Laser Engineering, 2002, 30, 159-165.

289 InGaAs/GaAs photorefractive multiple quantum well device in quantum confined Stark geometry. Applied Physics B: Lasers and Optics, 2001, 72, 685-689.

290 Excitonic resonant photorefractive devices around 1.06 1̂¹/4m. Optical Materials, 2001, 18, 183-185.
3.6

Photorefractive multiple quantum well device at 1064 nm and its application to adaptive vibration measurement. , 2001, , .

292 Photorefractive quantum well p-i-n diode: Design for high resolution and broad bandwidth. , 2001, , .
0

293 Resonant photorefractive effect in InGaAs/GaAs multiple quantum wells. Optics Letters, 1999, $24,321$.
3.3

13

294 Photorefractive properties of InGaAs/GaAs multiple quantum well structure. , 1999, , .
0
$295 \quad \begin{aligned} & \text { Resonant third-order optical nonlinearity in the laye } \\ & \text { Solid State Communications, 1998, 105, 503-506. }\end{aligned}$1.9Third-Order Optical Nonlinearity Due to Excitons and Biexcitons in a Self-Organized Quantum-WellMaterial (C6H13NH3)2PbI4. Journal of Nonlinear Optical Physics and Materials, 1998, 07, 153-159.

297

Photonic crystal modulators controlled by micro electro-mechanical systems-proposal and
experiments. , 0, , .114

Enhanced light emission of an organic semiconductor based two-dimensional photonic crystal with a nanocavity., 0, , .

Optical Switching in Photonic Crystal Waveguide Controlled by Micro Electro Mechanical System. , 0,
301 Large Vacuum Rabi Splitting in Single Self-Assembled Quantum Dot-Nanocavity System. Applied Physics2.414Express, 0, 1, 072102.

[^0]: Source: https://exaly.com/author-pdf/2301213/publications.pdf
 Version: 2024-02-01

