
Satoshi Iwamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2301213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic dimension band structures on a Si CMOS photonic platform. Science Advances, 2022, 8, eabk0468.	10.3	19
2	A large-scale single-mode array laser based on a topological edge mode. Nanophotonics, 2022, 11, 2169-2181.	6.0	8
3	Fabrication of three-dimensional photonic crystals for near-infrared light by micro-manipulation technique under optical microscope observation. Applied Physics Express, 2022, 15, 015001.	2.4	5
4	Topological Band Gaps Enlarged in Epsilon-Near-Zero Magneto-Optical Photonic Crystals. ACS Photonics, 2022, 9, 1621-1626.	6.6	11
5	Topologicallyâ€Protected Singleâ€Photon Sources with Topological Slow Light Photonic Crystal Waveguides. Laser and Photonics Reviews, 2022, 16, .	8.7	16
6	Synthetic Dimension Photonics on a Si CMOS Platform. , 2021, , .		0
7	Single photon generation in a topological slow light waveguide. , 2021, , .		0
8	Recent progress in topological waveguides and nanocavities in a semiconductor photonic crystal platform [Invited]. Optical Materials Express, 2021, 11, 319.	3.0	55
9	Experimental demonstration of topological slow light waveguides in valley photonic crystals. Optics Express, 2021, 29, 13441.	3.4	40
10	Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Physical Review Research, 2021, 3, .	3.6	31
11	All-dielectric chiral-field-enhanced Raman optical activity. Nature Communications, 2021, 12, 3062.	12.8	28
12	Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond. Applied Physics Letters, 2021, 118, .	3.3	35
13	Transmission properties of microwaves at an optical Weyl point in a three-dimensional chiral photonic crystal. Optics Express, 2021, 29, 27127.	3.4	3
14	Design of bull's-eye optical cavity toward efficient quantum media conversion using gate-defined quantum dot. Japanese Journal of Applied Physics, 2021, 60, 102003.	1.5	8
15	Unidirectional output from a quantum-dot single-photon source hybrid integrated on silicon. Optics Express, 2021, 29, 37117.	3.4	16
16	Chiral modes near exceptional points in symmetry broken H1 photonic crystal cavities. Physical Review Research, 2021, 3, .	3.6	10
17	Fabrication of valley photonic crystals with CMOS-compatible process. , 2021, , .		0
18	Hybrid integrated light sources on silicon assembled by transfer printing. , 2021, , .		0

#	Article	IF	CITATIONS
19	Semiconductor Topological Nanophotonics. , 2021, , .		ο
20	Emission at 1.6 μm from InAs Quantum Dots in Metamorphic InGaAs Matrix. Physica Status Solidi (B): Basic Research, 2020, 257, 1900392.	1.5	7
21	Surface-passivated high- <i>Q</i> GaAs photonic crystal nanocavity with quantum dots. APL Photonics, 2020, 5, .	5.7	29
22	Reflectivity of three-dimensional GaAs photonic band-gap crystals of finite thickness. Physical Review B, 2020, 101, .	3.2	10
23	Fabrication and optical characterization of photonic crystal nanocavities with electrodes for gate-defined quantum dots. Japanese Journal of Applied Physics, 2020, 59, SGGI05.	1.5	6
24	<i>In situ</i> wavelength tuning of quantum-dot single-photon sources integrated on a CMOS-processed silicon waveguide. Applied Physics Letters, 2020, 116, .	3.3	29
25	Slow light waveguides in topological valley photonic crystals. Optics Letters, 2020, 45, 2648.	3.3	91
26	Active topological photonics. Nanophotonics, 2020, 9, 547-567.	6.0	170
27	Slow Light Waveguide Based on Topological Edge States in Valley Photonic Crystals. , 2020, , .		0
28	Strong coupling between a single quantum dot and an L4/3 photonic crystal nanocavity. Applied Physics Express, 2020, 13, 082009.	2.4	2
29	Efficient single photon sources transfer-printed on Si with unidirectional light output. , 2020, , .		Ο
30	Valley anisotropy in elastic metamaterials. Physical Review B, 2019, 100, .	3.2	25
31	Photoluminescence properties as a function of growth mechanism for GaSb/GaAs quantum dots grown on Ge substrates. Journal of Applied Physics, 2019, 126, .	2.5	3
32	GaAs valley photonic crystal waveguide with light-emitting InAs quantum dots. Applied Physics Express, 2019, 12, 062005.	2.4	39
33	Single Plasmon Generation in an InAs/GaAs Quantum Dot in a Transfer-Printed Plasmonic Microring Resonator. ACS Photonics, 2019, 6, 1106-1110.	6.6	15
34	Strongly Coupled Single-Quantum-Dot–Cavity System Integrated on a CMOS-Processed Silicon Photonic Chip. Physical Review Applied, 2019, 11, .	3.8	38
35	Design of GaAs-based valley phononic crystals with multiple complete phononic bandgaps at ultra-high frequency. Applied Physics Express, 2019, 12, 047001.	2.4	17
36	Quantum-dot single-photon source on a CMOS silicon photonic chip integrated using transfer printing. APL Photonics, 2019, 4, 036105.	5.7	48

#	Article	IF	CITATIONS
37	Spin-dependent directional emission from a quantum dot ensemble embedded in an asymmetric waveguide. Optics Letters, 2019, 44, 3749.	3.3	3
38	Three-dimensional photonic crystal simultaneously integrating a nanocavity laser and waveguides. Optica, 2019, 6, 296.	9.3	20
39	Photonic crystal nanocavity based on a topological corner state. Optica, 2019, 6, 786.	9.3	274
40	Advances in Quantum Dot Lasers for High Efficiency and High Output Power Operation. The Review of Laser Engineering, 2019, 47, 210.	0.0	0
41	Quantum-dot single-photon source on a CMOS-processed silicon waveguide. , 2019, , .		0
42	An On-chip Full Poincar \tilde{A} ${\ensuremath{\mathbb C}}$ Beam Emitter Based on an Optical Micro-ring Cavity. , 2019, , .		1
43	Hybrid integration of quantum dot-nanocavity systems on silicon. , 2019, , .		Ο
44	Nanocavity based on a topological corner state in a two-dimensional photonic crystal. , 2019, , .		2
45	Topological Photonic Crystal Nanocavities. The Review of Laser Engineering, 2019, 47, 351.	0.0	Ο
46	Local tuning of transfer-printed quantum-dot single-photon sources on a CMOS silicon chip. , 2019, , .		0
47	Large vacuum Rabi splitting between a single quantum dot and an HO photonic crystal nanocavity. Applied Physics Letters, 2018, 112, .	3.3	27
48	Topologically protected elastic waves in one-dimensional phononic crystals of continuous media. Applied Physics Express, 2018, 11, 017201.	2.4	27
49	Enhanced photoelastic modulation in silica phononic crystal cavities. Japanese Journal of Applied Physics, 2018, 57, 042002.	1.5	О
50	Topological photonic crystal nanocavity laser. Communications Physics, 2018, 1, .	5.3	154
51	InAs/GaAs quantum dot infrared photodetectors on onâ€axis Si (100) substrates. Electronics Letters, 2018, 54, 1395-1397.	1.0	9
52	Circularly Polarized Topological Edge States Derived from Optical Weyl Points in Semiconductor-Based Chiral Woodpile Photonic Crystals. Journal of the Physical Society of Japan, 2018, 87, 123401.	1.6	15
53	Two dimensional photonic crystal nanocavities with InAs/GaAs quantum dot active regions embedded by MBE regrowth. Japanese Journal of Applied Physics, 2018, 57, 08PD03.	1.5	1
54	Nanowire–quantum-dot lasers on flexible membranes. Applied Physics Express, 2018, 11, 065002.	2.4	7

#	Article	IF	CITATIONS
55	High― <i>Q</i> nanocavities in semiconductorâ€based threeâ€dimensional photonic crystals. Electronics Letters, 2018, 54, 305-307.	1.0	6
56	Advanced Photonic Crystal Nanocavity Quantum Dot Lasers. IEICE Transactions on Electronics, 2018, E101.C, 553-560.	0.6	1
57	Transfer-printed single-photon sources coupled to wire waveguides. Optica, 2018, 5, 691.	9.3	76
58	Time-resolved vacuum Rabi oscillations in a quantum-dot–nanocavity system. Physical Review B, 2018, 97, .	3.2	11
59	Phonon Lifetime Observation in Epitaxial ScN Film with Inelastic X-Ray Scattering Spectroscopy. Physical Review Letters, 2018, 120, 235901.	7.8	23
60	Observation of infrared absorption of InAs quantum dot structures in AlGaAs matrix toward high-efficiency solar cells. Japanese Journal of Applied Physics, 2018, 57, 062001.	1.5	6
61	Transfer-printed quantum-dot nanolasers on a silicon photonic circuit. Applied Physics Express, 2018, 11, 072002.	2.4	24
62	Scheme for media conversion between electronic spin and photonic orbital angular momentum based on photonic nanocavity. Optics Express, 2018, 26, 21219.	3.4	8
63	Quantum-dot nanolasers on Si photonic circuits. , 2018, , .		0
64	Topological confinement of light in photonic crystals. , 2018, , .		0
65	Lasing in a topological photonic crystal nanocavity. , 2018, , .		0
66	Quantum dot single photon sources transfer-printed on wire waveguides. , 2018, , .		0
67	Growth of InGaAs/GaAs nanowire-quantum dots on AlGaAs/GaAs distributed Bragg reflectors for laser applications. Journal of Crystal Growth, 2017, 468, 144-148.	1.5	13
68	Enhanced optical Stark shifts in a single quantum dot embedded in an H1 photonic crystal nanocavity. Applied Physics Express, 2017, 10, 062002.	2.4	3
69	Optical coupling between atomically thin black phosphorus and a two dimensional photonic crystal nanocavity. Applied Physics Letters, 2017, 110, .	3.3	13
70	Demonstration of lasing oscillation in a plasmonic microring resonator containing quantum dots fabricated by transfer printing. Japanese Journal of Applied Physics, 2017, 56, 102001.	1.5	5
71	Manipulation of dynamic nuclear spin polarization in single quantum dots by photonic environment engineering. Physical Review B, 2017, 95, .	3.2	3
72	Temperature dependence of the biaxial tensile strain in suspended Ge cross-shaped microstructures. Japanese Journal of Applied Physics, 2017, 56, 06GF04.	1.5	0

#	Article	IF	CITATIONS
73	Method for generating a photonic NOON state with quantum dots in coupled nanocavities. Physical Review A, 2017, 96, .	2.5	15
74	Circularly polarized vacuum field in three-dimensional chiral photonic crystals probed by quantum dot emission. Physical Review B, 2017, 96, .	3.2	13
75	UV/Ozone-assisted bonding for InAs/GaAs quantum dot lasers on Si. , 2017, , .		1
76	A photonic crystal nanocavity with a quantum dot active region embedded by MBE regrowth. , 2017, , .		1
77	Imaging of topologically protected elastic mode in silica 1D phononic crystal via photoelastic effect. , 2017, , .		Ο
78	Thresholdless quantum dot nanolaser. Optics Express, 2017, 25, 19981.	3.4	53
79	Optical Weyl Points below the Light Line in Semiconductor Chiral Woodpile Photonic Crystals. , 2017, , .		1
80	Guiding of laser light from a nanocavity in a three-dimensional photonic crystal. , 2017, , .		0
81	Time-Domain Observation of Vacuum Rabi Oscillations in a Strongly Coupled Quantum Dot-Nanocavity System. , 2017, , .		0
82	Thresholdless lasing with quantum dot gain. , 2017, , .		0
83	Tensile strain engineering of germanium micro-disks on free-standing SiO ₂ beams. Japanese Journal of Applied Physics, 2016, 55, 04EH02.	1.5	14
84	Semiconductor Three-Dimensional Photonic Crystals with Novel Layer-by-Layer Structures. Photonics, 2016, 3, 34.	2.0	6
85	Self-assembled formation of GaAsP nano-apertures above InAs/GaAs quantum dots by the thermal diffusion of phosphorus. Physica Status Solidi (B): Basic Research, 2016, 253, 659-663.	1.5	2
86	InAs/GaAs quantum dot lasers with GaP strain-compensation layers grown by molecular beam epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 958-964.	1.8	8
87	A hybrid silicon evanescent quantum dot laser. Applied Physics Express, 2016, 9, 092102.	2.4	26
88	Design of quasi-one-dimensional phononic crystal cavity for efficient photoelastic modulation. Japanese Journal of Applied Physics, 2016, 55, 08RD02.	1.5	0
89	A Nanowire-Based Plasmonic Quantum Dot Laser. Nano Letters, 2016, 16, 2845-2850.	9.1	64
90	Crystallinity improvements of Ge waveguides fabricated by epitaxial lateral overgrowth. Japanese Journal of Applied Physics, 2016, 55, 04EH06.	1.5	5

#	Article	IF	CITATIONS
91	Direct modulation of InAs/GaAs quantum dot lasers on silicon at 60 $\hat{A}^oC.$, 2016, , .		1
92	Large modulation bandwidth (13.1 GHz) of 1.3 µm-range quantum dot lasers with high dot density and thin barrier layer. , 2016, , .		1
93	Direct modulation of 13 μm quantum dot lasers on silicon at 60 °C. Optics Express, 2016, 24, 18428.	3.4	25
94	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi>-shell carrier assisted dynamic nuclear spin polarization in single quantum dots at zero external magnetic field. Physical Review B, 2016, 93, .</mml:math 	3.2	3
95	(Invited) Fabrication of Ge Waveguides by Epitaxial Lateral Overgrowth toward Monolithic Integration of Light Sources. ECS Transactions, 2016, 75, 199-209.	0.5	1
96	Position dependent optical coupling between single quantum dots and photonic crystal nanocavities. Applied Physics Letters, 2016, 109, .	3.3	23
97	Active zinc-blende Ill–nitride photonic structures on silicon. Applied Physics Express, 2016, 9, 012002.	2.4	7
98	Suspended germanium cross-shaped microstructures for enhancing biaxial tensile strain. Japanese Journal of Applied Physics, 2016, 55, 04EH14.	1.5	3
99	Control of Light Polarization using Photonic and Phononic Crystals. , 2016, , .		0
100	Effect of metal side claddings on emission decay rates of single quantum dots embedded in a sub-wavelength semiconductor waveguide. Japanese Journal of Applied Physics, 2016, 55, 08RC02.	1.5	0
101	Influence of the relative positions of quantum dots and nanocavities on the optical coupling strength. , 2015, , .		0
102	Eigenvalue decomposition method for photon statistics of frequency-filtered fields and its application to quantum dot emitters. Physical Review A, 2015, 92, .	2.5	9
103	Circularly Polarized Light Emission of Quantum Dots at the Band Edge of Three-Dimensional Chiral Photonic Crystals. , 2015, , .		0
104	Demonstration of a three-dimensional photonic crystal nanocavity in a ⟠110⟩-layered diamond structure. Applied Physics Letters, 2015, 107, .	3.3	9
105	Spontaneous and stimulated Raman scattering in silica-cladded silicon photonic crystal waveguides. Japanese Journal of Applied Physics, 2015, 54, 04DG02.	1.5	3
106	Whispering Gallery Mode Resonances from Ge Micro-Disks on Suspended Beams. Frontiers in Materials, 2015, 2, .	2.4	23
107	Localized Guided-Mode and Cavity-Mode Double Resonance in Photonic Crystal Nanocavities. Physical Review Applied, 2015, 3, .	3.8	14
108	Design of efficient photo-elastic modulator using quasi-1D phononic crystal cavity. , 2015, , .		0

#	Article	IF	CITATIONS
109	Effect of metal side claddings on emission decay rate of single quantum dots embedded in a subwavelength semiconductor waveguide. , 2015, , .		0
110	Fabrication of Ge micro-disks on free-standing SiO2 beams for monolithic light emission. , 2015, , .		1
111	Low-Threshold near-Infrared GaAs–AlGaAs Core–Shell Nanowire Plasmon Laser. ACS Photonics, 2015, 2, 165-171.	6.6	92
112	Vacuum Rabi Spectra of a Single Quantum Emitter. Physical Review Letters, 2015, 114, 143603.	7.8	31
113	Room-temperature lasing in a single nanowire with quantum dots. Nature Photonics, 2015, 9, 501-505.	31.4	159
114	Spin-on doping of germanium-on-insulator wafers for monolithic light sources on silicon. Japanese Journal of Applied Physics, 2015, 54, 052101.	1.5	8
115	InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Wafer Bonding. IEEE Photonics Technology Letters, 2015, 27, 875-878.	2.5	26
116	High quality-factor Si/SiO_2-InP hybrid micropillar cavities with submicrometer diameter for 155-μm telecommunication band. Optics Express, 2015, 23, 16264.	3.4	10
117	Room-temperature lasing in GaAs nanowires embedding multi-stacked InGaAs/GaAs quantum dots. , 2015, , .		1
118	Asymmetric out-of-plane power distribution in a two-dimensional photonic crystal nanocavity. Optics Letters, 2015, 40, 3372.	3.3	8
119	Germanium Photonic Crystal Nanobeam Cavity with Q > 1,300. , 2015, , .		1
120	1.3-μm InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Bonding. , 2015, , .		0
121	Single Emitter Vacuum Rabi Splitting Measured Through Direct Free Space Spontaneous Emission. , 2015, , .		0
122	Temperature dependency of the emission properties from positioned In(Ga)As/GaAs quantum dots. AIP Advances, 2014, 4, .	1.3	9
123	Measurement of the Second Order Coherence of a Nanolaser Through Its Intra-cavity Second Harmonic Generation. , 2014, , .		0
124	Design of efficient surface plasmon polariton modulators using graphene. Japanese Journal of Applied Physics, 2014, 53, 08MG01.	1.5	4
125	Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters. Nature Communications, 2014, 5, 5580.	12.8	103
126	Circular dichroism in a three-dimensional semiconductor chiral photonic crystal. Applied Physics Letters, 2014, 105, .	3.3	38

#	Article	IF	CITATIONS
127	Impact of the dark path on quantum dot single photon emitters in small cavities. Physical Review Letters, 2014, 113, 143604.	7.8	5
128	Highly uniform, multi-stacked InGaAs/GaAs quantum dots embedded in a GaAs nanowire. Applied Physics Letters, 2014, 105, .	3.3	26
129	Design of a three-dimensional photonic crystal nanocavity based on a \$langle 110angle \$-layered diamond structure. Japanese Journal of Applied Physics, 2014, 53, 04EG08.	1.5	8
130	InAs/GaAs quantum dot lasers metal-stripe-bonded onto SOI substrate. , 2014, , .		1
131	Measuring the second-order coherence of a nanolaser by intracavity frequency doubling. Physical Review A, 2014, 89, .	2.5	11
132	Group IV Light Sources to Enable the Convergence of Photonics and Electronics. Frontiers in Materials, 2014, 1, .	2.4	33
133	Design of slow-light grating waveguides for silicon Raman amplifier. , 2013, , .		2
134	Growth of highâ€quality InAs quantum dots embedded in GaAs nanowire structures on Si substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1496-1499.	0.8	6
135	Improvement of photoluminescence from ge waveguides fabricated by low temperature selective epitaxial growth and rapid thermal annealing. , 2013, , .		2
136	Self-frequency summing in photonic crystal nanocavity quantum dot lasers. , 2013, , .		0
137	Nonlinear photonics in single quantum dot-photonic crystal nanocavity couples systems. , 2013, , .		Ο
138	Rim formation on non-elongated InAs quantum dots grown by partial cap and annealing process at low temperature. Journal of Crystal Growth, 2013, 378, 558-561.	1.5	1
139	Non-VLS growth of GaAs nanowires on silicon by a gallium pre-deposition technique. Journal of Crystal Growth, 2013, 378, 562-565.	1.5	3
140	Large vacuum Rabi splitting in an H0 photonic crystal nanocavity-quantum dot system. , 2013, , .		0
141	Formation and optical properties of multi-stack InGaAs quantum dots embedded in GaAs nanowires by selective metalorganic chemical vapor deposition. Journal of Crystal Growth, 2013, 370, 299-302.	1.5	5
142	Shape evolution of low density InAs quantum dots in the partial capping process by using As2 source. Journal of Crystal Growth, 2013, 378, 549-552.	1.5	2
143	Design of large-bandwidth single-mode operation waveguides in silicon three-dimensional photonic crystals using two guided modes. Optics Express, 2013, 21, 12443.	3.4	3
144	Nanocavity-based self-frequency conversion laser. Optics Express, 2013, 21, 19778.	3.4	21

#	Article	IF	CITATIONS
145	Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal. Optics Express, 2013, 21, 29905.	3.4	23
146	Design of Si/SiO_2 micropillar cavities for Purcell-enhanced single photon emission at 155Âμm from InAs/InP quantum dots. Optics Letters, 2013, 38, 3241.	3.3	16
147	Wide range Q-factor control in a photonic crystal nanobeam cavity incorporating quantum dots. , 2013, , .		Ο
148	Design of Silicon Photonic Crystal Waveguides for High Gain Raman Amplification Using Two Symmetric Transvers-Electric-Like Slow-Light Modes. Japanese Journal of Applied Physics, 2013, 52, 04CG03.	1.5	4
149	Self-frequency summing in quantum dot photonic crystal nanocavity lasers. Applied Physics Letters, 2013, 103, 243115.	3.3	7
150	Electro-Mechanical Q Factor Control of Photonic Crystal Nanobeam Cavity. Japanese Journal of Applied Physics, 2013, 52, 04CG01.	1.5	6
151	Enhancement of Valence Band Mixing in Individual InAs/GaAs Quantum Dots by Rapid Thermal Annealing. Japanese Journal of Applied Physics, 2013, 52, 125001.	1.5	9
152	Multi-color visible light generation by self-frequency doubling in photonic crystal nanocavity quantum dot lasers. , 2013, , .		0
153	Design of highâ€∢i>Q nanocavity in threeâ€dimensional woodpile photonic crystal with vertically mirrorâ€symmetric structure. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1457-1460.	0.8	1
154	Highâ€ <i>Q</i> AlN ladderâ€structure photonic crystal nanocavity fabricated by layer transfer. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1517-1520.	0.8	5
155	Cavity Quantum Electrodynamics in Semiconductors: Quantum Dot-Photonic Crystal Nanocavity Coupled Systems. The Review of Laser Engineering, 2013, 41, 485.	0.0	0
156	A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands. New Journal of Physics, 2012, 14, 083035.	2.9	11
157	Formation of a single In(Ga)As/GaAs quantum dot embedded in a site-controlled GaAs nanowire by metalorganic chemical vapor deposition for application to single photon sources. Materials Research Society Symposia Proceedings, 2012, 1439, 115-119.	0.1	0
158	Fabrication of AlGaN Two-Dimensional Photonic Crystal Nanocavities by Selective Thermal Decomposition of GaN. Applied Physics Express, 2012, 5, 126502.	2.4	38
159	Wavelength Tunable Quantum Dot Single-Photon Source with a Side Gate. Japanese Journal of Applied Physics, 2012, 51, 02BJ05.	1.5	0
160	High Q H1 photonic crystal nanocavities with efficient vertical emission. Optics Express, 2012, 20, 28292.	3.4	39
161	2D and 3D photonic crystal nanocavity lasers with quantum dot gain. , 2012, , .		0
162	High guided mode–cavity mode coupling for an efficient extraction of spontaneous emission of a single quantum dot embedded in a photonic crystal nanobeam cavity. Physical Review B, 2012, 86, .	3.2	12

#	Article	IF	CITATIONS
163	Site-controlled formation of InAs/GaAs quantum-dot-in-nanowires for single photon emitters. Applied Physics Letters, 2012, 100, .	3.3	47
164	Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities. Applied Physics Letters, 2012, 101, 141124.	3.3	53
165	High-Q (>5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots. Applied Physics Letters, 2012, 100, .	3.3	24
166	Optical Properties of Site-Controlled InGaAs Quantum Dots Embedded in GaAs Nanowires by Selective Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 11PE13.	1.5	1
167	1.3 μm InAs/GaAs quantum dot lasers on Si substrates by low-resistivity, Au-free metal-mediated wafer bonding. Journal of Applied Physics, 2012, 112, 033107.	2.5	13
168	Enhancement of Light Emission from Silicon by Utilizing Photonic Nanostructures. IEICE Transactions on Electronics, 2012, E95-C, 206-212.	0.6	5
169	Silicon-based three-dimensional photonic crystal nanocavity laser with InAs quantum-dot gain. Applied Physics Letters, 2012, 101, .	3.3	8
170	Intra-cavity frequency doubling in photonic crystal nanocavity quantum dot lasers. , 2012, , .		1
171	Single quantum dot-photonic crystal nanocavity laser. , 2012, , .		0
172	Cavity Quantum Electrodynamics and Lasing Oscillation in Single Quantum Dot-Photonic Crystal Nanocavity Coupled Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1818-1829.	2.9	31
173	High- <i>Q</i> AlN photonic crystal nanobeam cavities fabricated by layer transfer. Applied Physics Letters, 2012, 101, .	3.3	29
174	Influence of p-doping on the temperature dependence of InAs/GaAs quantum dot excited state radiative lifetime. Applied Physics Letters, 2012, 101, .	3.3	6
175	Wavelength Tunable Quantum Dot Single-Photon Source with a Side Gate. Japanese Journal of Applied Physics, 2012, 51, 02BJ05.	1.5	2
176	Optical Properties of Site-Controlled InGaAs Quantum Dots Embedded in GaAs Nanowires by Selective Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 11PE13.	1.5	2
177	Proposal and design of III-V/Si hybrid lasers with current injection across conductive wafer-bonded heterointerfaces. , 2011, , .		0
178	Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities. Applied Physics Letters, 2011, 98, .	3.3	32
179	Circularly Polarized Light Emission from Semiconductor Planar Chiral Nanostructures. Physical Review Letters, 2011, 106, 057402.	7.8	147
180	Novel III-V/Si hybrid laser structures with current injection across conductive wafer-bonded heterointerfaces: A proposal and analysis. IEICE Electronics Express, 2011, 8, 596-603.	0.8	11

#	Article	IF	CITATIONS
181	Lasing Characteristics of a Quantum-Dot-3D-Photonic-Crystal-Nanocavity Coupled System: Interaction between Fully Confined Electrons and Photons. AIP Conference Proceedings, 2011, , .	0.4	0
182	Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap. Nature Photonics, 2011, 5, 91-94.	31.4	173
183	Spontaneous Two-Photon Emission from a Single Quantum Dot. Physical Review Letters, 2011, 107, 233602.	7.8	124
184	New method to isolate and distribute photoluminescence emissions from InAs quantum dots over a wide-wavelength range. Journal of Crystal Growth, 2011, 323, 250-253.	1.5	2
185	Design of a highâ€Q H0 photonic crystal nanocavity for cavity QED. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 340-342.	0.8	4
186	Fabrication of electrically pumped InAs/GaAs quantum dot lasers on Si substrates by Auâ€mediated wafer bonding. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 319-321.	0.8	7
187	Effects of growth temperature of partial GaAs cap on InAs quantum dots in Inâ€flush process for single dot spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 248-250.	0.8	7
188	Fabrication of high-Q silicon-based three-dimensional photonic crystal nanocavity and its lasing oscillation with InAs quantum-dot gain. , 2011, , .		1
189	Observation of Purcell effect in a 3D photonic crystal nanocavity with a single quantum dot. , 2011, , .		1
190	Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot. Applied Physics Letters, 2011, 98, .	3.3	84
191	Competing influence of an in-plane electric field on the Stark shifts in a semiconductor quantum dot. Applied Physics Letters, 2011, 99, 181109.	3.3	5
192	Neutralization of positively charged excitonic state in single InAs quantum dot by Si delta doping. Journal of Physics: Conference Series, 2010, 245, 012088.	0.4	4
193	Advances in 3D photonic crystal nanocavity with quantum dots. , 2010, , .		0
194	Esaki diodes live and learn. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2010, 86, 451-453.	3.8	2
195	Observation of unique photon statistics of single artificial atom laser. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2489-2492.	2.7	3
196	Suppression of indefinite peaks in InAs/GaAs quantum dot spectrum by low temperature capping in the indium-flush method. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2753-2756.	2.7	11
197	Charged and neutral biexciton–exciton cascade in a single quantum dot within a photonic bandgap. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2563-2566.	2.7	6
198	Design, fabrication and optical characterization of GaAs photonic crystal nanocavity lasers with InAs quantum dots gain wafer-bonded onto Si substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2560-2562.	2.7	1

#	Article	IF	CITATIONS
199	Enhancement of photoluminescence from germanium by utilizing air-bridge-type photonic crystal slab. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2556-2559.	2.7	8
200	Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system. Nature Physics, 2010, 6, 279-283.	16.7	300
201	Spin dynamics of excited trion states in a single InAs quantum dot. Physical Review B, 2010, 81, .	3.2	14
202	Switching operation of lasing wavelength in mid-infrared ridge-waveguide quantum cascade lasers coupled with microcylindrical cavity. Applied Physics Letters, 2010, 96, .	3.3	10
203	Zero-cell photonic crystal nanocavity laser with quantum dot gain. Applied Physics Letters, 2010, 97, .	3.3	19
204	High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity. Optics Express, 2010, 18, 8144.	3.4	43
205	Electrically pumped 13 μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer. Optics Express, 2010, 18, 10604.	3.4	84
206	Single quantum dot laser using photonic crystal nanocavity. , 2010, , .		0
207	Demonstration of a Silicon photonic Crystal Slab LED with Efficient Electroluminescence. , 2010, , .		3
208	Lasing Oscillation in a Three-Dimensional Photonic Crystal Nanocavity with Quantum Dots. , 2010, , .		0
209	Circularly-Polarized Light Emission from Semiconductor Planar Chiral Photonic Crystals. , 2010, , .		Ο
210	Single Quantum Dot Laser with Photonic Crystal Nanocavity. , 2009, , .		0
211	Light-matter interaction in single quantum dot with photonic crystal nanocavity. , 2009, , .		Ο
212	Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity. Applied Physics Letters, 2009, 94, .	3.3	41
213	Outcoupling of Light Generated in a Monolithic Silicon Photonic Crystal Nanocavity through a Lateral Waveguide. Japanese Journal of Applied Physics, 2009, 48, 062003.	1.5	Ο
214	Investigation of the Spectral Triplet in Strongly Coupled Quantum Dot–Nanocavity System. Applied Physics Express, 2009, 2, 122301.	2.4	20
215	Resonant photoluminescence from Ge self-assembled dots in optical microcavities. Journal of Crystal Growth, 2009, 311, 883-887.	1.5	7
216	Demonstration of high-Qâ€^(>8600) three-dimensional photonic crystal nanocavity embedding quantum dots. Applied Physics Letters, 2009, 94, .	3.3	35

#	Article	IF	CITATIONS
217	Photonic band-edge micro lasers with quantum dot gain. Optics Express, 2009, 17, 640.	3.4	14
218	Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate. Optics Express, 2009, 17, 7036.	3.4	55
219	Photonic crystal nanocavity laser with a single quantum dot gain. Optics Express, 2009, 17, 15975.	3.4	110
220	Photonic crystal nanocavity lasers with InAs quantum dots bonded onto silicon substrates. , 2009, , .		0
221	Photonic Crystal Nanocavity Laser with Single Quantum Dot Gain. , 2009, , .		1
222	Prerequisites of nanocavities for single artificial atom laser. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2831-2834.	0.8	0
223	Ultra-low threshold photonic crystal nanocavity laser. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1800-1803.	2.7	21
224	Observation of very narrow fine-structure splittings in self-assembled quantum dots by photocurrent spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2192-2194.	2.7	0
225	Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nature Photonics, 2008, 2, 688-692.	31.4	166
226	Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness. Optics Express, 2008, 16, 448.	3.4	36
227	Design of high-Q photonic crystal microcavities with a graded square lattice for application to quantum cascade lasers. Optics Express, 2008, 16, 21321.	3.4	14
228	Enhanced photoluminescence from silicon photonic crystal nanocavities with different sizes of mode volume. , 2008, , .		0
229	Two-Dimensional Photonic Crystal Resist Membrane Nanocavity Embedding Colloidal Dot-in-a-Rod Nanocrystals. Nano Letters, 2008, 8, 260-264.	9.1	38
230	Delivery of photons generated in silicon photonic crystal nano-cavity through lateral waveguide. , 2008, , .		0
231	Microcylinder quantum cascade laser coupled with an optical waveguide. , 2008, , .		0
232	Coupling of quantum dot light emission with point defect cavity resonances in three-dimensional photonic crystals. , 2008, , .		0
233	Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity. Applied Physics Letters, 2008, 93, 183114.	3.3	15
234	Applications of FDTD Analyses to Photonic Crystal Studies. The Review of Laser Engineering, 2008, 36, 614-620.	0.0	0

#	Article	IF	CITATIONS
235	Ge dots in Optical Microcavities–A Possible Direction for Silicon-based Light Emitting Devices. ECS Transactions, 2008, 16, 857-864.	0.5	0
236	Efficient excitation and emission of single quantum dot by simultaneous coupling to two different photonic crystal nanocavity modes. , 2008, , .		0
237	Achievement of ultra-low threshold excitation power (8 nW) in a nearly-single quantum dot nanocavity laser. , 2008, , .		0
238	Design of Surface-Emitting Photonic Crystal Microcavitis for Quantum Cascade Lasers. , 2007, , .		0
239	Fabrication of photonic crystal nanocavity for generating entangled photon pairs using quantum dots. , 2007, , .		0
240	Fabrication and characterization of photonic crystal nanocavity with degenerated cavity modes for generating entangled photon pairs using quantum dots. , 2007, , .		0
241	AlN air-bridge photonic crystal nanocavities demonstrating high quality factor. Applied Physics Letters, 2007, 91, 051106.	3.3	55
242	Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature. Applied Physics Letters, 2007, 91, .	3.3	60
243	Demonstration of High-Q Photonic Crystal H1-defect Nanocavities after Closing of Photonic Bandgap. , 2007, , .		0
244	Arrayed 3D Photonic Crystals for Optical Communication Wavelengths. , 2007, , .		0
245	Photonic crystal nanocavity lasers with quantum dots. Proceedings of SPIE, 2007, , .	0.8	0
246	Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor. Physical Review B, 2007, 75, .	3.2	49
247	Photonic Crystal Nanocavity for Highly Efficient Lasers and Light Sources. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
248	Demonstration of High-Q Photonic Crystal H1-defect Nanocavities after Closing of Photonic Bandgap. , 2007, , .		0
249	Selective Excitation of a Single Quantum Dot in a Photonic Crystal Nanocavity by using Cavity Resonance. AIP Conference Proceedings, 2007, , .	0.4	0
250	Fabrication and optical characterization of III-nitride air-bridge photonic crystal with GaN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 90-94.	0.8	2
251	Photorefractive Semiconductors and Quantum-Well Structures. , 2007, , 363-389.		0
252	Localized excitation of InGaAs quantum dots by utilizing a photonic crystal nanocavity. Applied Physics Letters, 2006, 88, 141108.	3.3	14

#	Article	IF	CITATIONS
253	Room temperature continuous-wave lasing in photonic crystal nanocavity. Optics Express, 2006, 14, 6308.	3.4	186
254	Cavity Resonant Excitation of InGaAs Quantum Dots in Photonic Crystal Nanocavities. Japanese Journal of Applied Physics, 2006, 45, 6091-6095.	1.5	11
255	Development of high-yield fabrication technique for MEMS-PhC devices. IEICE Electronics Express, 2006, 3, 39-43.	0.8	3
256	Fabrication of Rod-Connected Diamond Structures at Optical Wavelengths by Micromanipulation. , 2006, , .		0
257	Advances in photonic crystals with MEMS and with semiconductor quantum dots. Laser Physics, 2006, 16, 223-231.	1.2	3
258	Development of Electrically Driven Single-Quantum-Dot Device at Optical Fiber Bands. Japanese Journal of Applied Physics, 2006, 45, 3621-3624.	1.5	13
259	Enhancement of light emission from single quantum dot in photonic crystal nanocavity by using cavity resonant excitation. Applied Physics Letters, 2006, 89, 241124.	3.3	21
260	Highly efficient optical pumping of photonic crystal nanocavity lasers using cavity resonant excitation. Applied Physics Letters, 2006, 89, 161111.	3.3	27
261	Observation of micromechanically controlled tuning of photonic crystal line-defect waveguide. Applied Physics Letters, 2006, 88, 011104.	3.3	19
262	Organic Light-Emitting Devices Using Photonic Crystals. The Review of Laser Engineering, 2006, 34, 767-772.	0.0	0
263	Resonant-Wavelength Control in Visible-Light Range of Organic Photonic Crystal Nanocavities. Japanese Journal of Applied Physics, 2006, 45, 6112-6115.	1.5	0
264	Microdisk lasers: quantum dot lasing and bistability. , 2005, , .		0
265	1.55-μm light emission from InAs QDs embedded in a high-Q photonic crystal microcavity. , 2005, , .		0
266	Single dot spectroscopy of GaN/AlN self-assembled quantum dots. AIP Conference Proceedings, 2005, , .	0.4	0
267	Functional Imaging Using InGaAs/GaAs Photorefractive Multiple Quantum Wells. AIP Conference Proceedings, 2005, , .	0.4	0
268	InAsSb Quantum Dots Grown on GaAs Substrates by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2005, 44, L45-L47.	1.5	13
269	Observation of 1.55 µm Light Emission from InAs Quantum Dots in Photonic Crystal Microcavity. Japanese Journal of Applied Physics, 2005, 44, 2579-2583.	1.5	12
270	Enhanced Luminance Efficiency of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals. Japanese Journal of Applied Physics, 2005, 44, 2844-2848.	1.5	30

#	Article	IF	CITATIONS
271	Enhanced light emission from an organic photonic crystal with a nanocavity. Applied Physics Letters, 2005, 87, 151119.	3.3	34
272	Organic semiconductor based two-dimensional photonic crystal with a single defect. , 2005, , .		0
273	Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding. Optics Express, 2005, 13, 1615.	3.4	44
274	Enhancement of Cavity-Qin a Quasi-Three-Dimensional Photonic Crystal. Japanese Journal of Applied Physics, 2004, 43, 1990-1994.	1.5	8
275	Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature. Applied Physics Letters, 2004, 85, 1326-1328.	3.3	30
276	Picosecond dynamics of spin-related optical nonlinearities in InxGa1â^'xAs multiple quantum wells at 1064 nm. Applied Physics Letters, 2004, 84, 1043-1045.	3.3	7
277	Numerical analysis of DFB lasing action in photonic crystals with quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 814-819.	2.7	3
278	Simultaneous determination of the index and absorption gratings in multiple quantum well photorefractive devices designed for laser ultrasonic sensor. Optics Communications, 2004, 242, 7-12.	2.1	8
279	Long-wavelength luminescence from GaSb quantum dots grown on GaAs substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 275-278.	2.7	13
280	Exciton and biexciton luminescence from single hexagonal GaNâ^•AlN self-assembled quantum dots. Applied Physics Letters, 2004, 85, 64-66.	3.3	92
281	Spin and carrier relaxation in resonantly excited InGaAs MQWs. Semiconductor Science and Technology, 2004, 19, S339-S341.	2.0	7
282	Control of light propagation and localization in a photonic crystal slab by using a micromechanical actuator. , 2004, , .		1
283	Optical Characteristics of Two-Dimensional Photonic Crystal Slab Nanocavities with Self-Assembled InAs Quantum Dots for 1.3 µm Light Emission. Japanese Journal of Applied Physics, 2003, 42, 2391-2394.	1.5	6
284	Semiconductor multiple quantum-well photorefractive devices for vibration measurement. , 2002, , .		0
285	Low-coherence photorefractive holography for high-speed 3D imaging including through scattering media. , 2002, 4619, 98.		1
286	Photorefractive Materials and Their Applications. Semiconductor Photorefractive Quantum Wells and Their Applications The Review of Laser Engineering, 2002, 30, 159-165.	0.0	0
287	Photorefractive InGaAs/GaAs multiple quantum wells in the Franz–Keldysh geometry. Journal of Applied Physics, 2001, 89, 5889-5896.	2.5	13
288	Photorefractive multiple quantum wells at 1064  nm. Optics Letters, 2001, 26, 22.	3.3	17

#	Article	lF	CITATIONS
289	InGaAs/GaAs photorefractive multiple quantum well device in quantum confined Stark geometry. Applied Physics B: Lasers and Optics, 2001, 72, 685-689.	2.2	5
290	Excitonic resonant photorefractive devices around 1.06 \hat{l} ¼m. Optical Materials, 2001, 18, 183-185.	3.6	1
291	Photorefractive multiple quantum well device at 1064 nm and its application to adaptive vibration measurement. , 2001, , .		Ο
292	Photorefractive quantum well p-i-n diode: Design for high resolution and broad bandwidth. , 2001, , .		0
293	Resonant photorefractive effect in InGaAs/GaAs multiple quantum wells. Optics Letters, 1999, 24, 321.	3.3	13
294	Photorefractive properties of InGaAs/GaAs multiple quantum well structure. , 1999, , .		0
295	Resonant third-order optical nonlinearity in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Communications, 1998, 105, 503-506.	1.9	114
296	Third-Order Optical Nonlinearity Due to Excitons and Biexcitons in a Self-Organized Quantum-Well Material (C6H13NH3)2PbI4. Journal of Nonlinear Optical Physics and Materials, 1998, 07, 153-159.	1.8	25
297	Photonic crystal modulators controlled by micro electro-mechanical systems-proposal and experiments. , 0, , .		Ο
298	Enhanced light emission of an organic semiconductor based two-dimensional photonic crystal with a nanocavity. , 0, , .		0
299	Optical Switching in Photonic Crystal Waveguide Controlled by Micro Electro Mechanical System. , 0, , .		2
300	Design and fabrication of MEMS optical modulators integrated with PHC waveguides. , 0, , .		1
301	Large Vacuum Rabi Splitting in Single Self-Assembled Quantum Dot-Nanocavity System. Applied Physics Express, 0, 1, 072102.	2.4	14
302	Eâ€band InAs/GaAs Triâ€layer Quantum Dot Lasers. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100419.	1.8	0