Gang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2301131/publications.pdf

Version: 2024-02-01

	331670	265206
1,826	21	42
citations	h-index	g-index
58	58	2812
docs citations	times ranked	citing authors
	citations 58	1,826 21 citations h-index 58 58

#	Article	IF	CITATIONS
1	Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser. Applied Surface Science, 2009, 256, 61-66.	6.1	371
2	A microfluidic droplet digital PCR for simultaneous detection of pathogenic Escherichia coli O157 and Listeria monocytogenes. Biosensors and Bioelectronics, 2015, 74, 770-777.	10.1	145
3	Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation. ACS Applied Materials & Diterfaces, 2018, 10, 20150-20158.	8.0	145
4	A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosensors and Bioelectronics, 2015, 71, 380-386.	10.1	143
5	Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Biosensors and Bioelectronics, 2014, 51, 213-218.	10.1	92
6	Absolute quantification of lung cancer related microRNA by droplet digital PCR. Biosensors and Bioelectronics, 2015, 74, 836-842.	10.1	87
7	A microfluidic chip based on surfactant-doped polydimethylsiloxane (PDMS) in a sandwich configuration for low-cost and robust digital PCR. Sensors and Actuators B: Chemical, 2017, 245, 414-422.	7.8	80
8	Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels. Biosensors and Bioelectronics, 2016, 80, 300-306.	10.1	58
9	A "place n play―modular pump for portable microfluidic applications. Biomicrofluidics, 2012, 6, 14118-1411816.	2.4	51
10	A Rapid and Low-Cost Procedure for Fabrication of Glass Microfluidic Devices. Journal of Microelectromechanical Systems, 2007, 16, 1193-1200.	2.5	49
11	Integration of Au Nanorods With Flexible Thin-Film Microelectrode Arrays for Improved Neural Interfaces. Journal of Microelectromechanical Systems, 2009, 18, 88-96.	2.5	46
12	A self-digitization chip integrated with hydration layer for low-cost and robust digital PCR. Analytica Chimica Acta, 2019, 1055, 65-73.	5.4	44
13	Desktop aligner for fabrication of multilayer microfluidic devices. Review of Scientific Instruments, 2015, 86, 075008.	1.3	37
14	Low-cost rapid prototyping of glass microfluidic devices using a micromilling technique. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	36
15	Programmable droplet manipulation by combining a superhydrophobic magnetic film and an electromagnetic pillar array. Sensors and Actuators B: Chemical, 2018, 262, 892-901.	7.8	35
16	A Compact Disk-Like Centrifugal Microfluidic System for High-Throughput Nanoliter-Scale Protein Crystallization Screening. Analytical Chemistry, 2010, 82, 4362-4369.	6.5	33
17	Fabrication of flexible microelectrode arrays integrated with microfluidic channels for stable neural interfaces. Sensors and Actuators A: Physical, 2013, 197, 9-14.	4.1	33
18	A facile microfluidic strategy for measuring interfacial tension. Applied Physics Letters, 2013, 103, .	3.3	30

#	Article	IF	Citations
19	Automatic magnetic manipulation of droplets on an open surface using a superhydrophobic electromagnet needle. Sensors and Actuators B: Chemical, 2018, 257, 409-418.	7.8	28
20	Investigation and improvement of reversible microfluidic devices based on glass–PDMS–glass sandwich configuration. Microfluidics and Nanofluidics, 2014, 16, 83-90.	2.2	27
21	Fast and robust sample self-digitization for digital PCR. Analytica Chimica Acta, 2020, 1107, 127-134.	5.4	25
22	A novel magnet-actuated droplet manipulation platform using a floating ferrofluid film. Scientific Reports, 2017, 7, 15705.	3.3	22
23	A centrifugal microfluidic device for screening protein crystallization conditions by vapor diffusion. Sensors and Actuators B: Chemical, 2015, 219, 105-111.	7.8	19
24	High-Performance Size-Based Microdevice for the Detection Of Circulating Tumor Cells from Peripheral Blood in Rectal Cancer Patients. PLoS ONE, 2013, 8, e75865.	2.5	18
25	A facile method for the fabrication of glass-PDMS-glass sandwich microfluidic devices by sacrificial molding. Sensors and Actuators B: Chemical, 2018, 261, 364-371.	7.8	16
26	A power-free, parallel loading microfluidic reactor array for biochemical screening. Scientific Reports, 2018, 8, 13664.	3.3	16
27	A superhydrophobic chip integrated with an array of medium reservoirs for long-term hanging drop spheroid culture. Acta Biomaterialia, 2021, 135, 234-242.	8.3	13
28	A new process for fabricating tip-shaped polymer microstructure array with patterned metallic coatings. Sensors and Actuators A: Physical, 2009, 150, 296-301.	4.1	12
29	Wafer-Scale and Cost-Effective Manufacturing of Controllable Nanogap Arrays for Highly Sensitive SERS Sensing. ACS Applied Materials & SERS Sensing.	8.0	12
30	Numerical analysis of an electrokinetic double-focusing injection technique for microchip CE. Electrophoresis, 2006, 27, 5009-5019.	2.4	11
31	A droplet-based pH regulator in microfluidics. Lab on A Chip, 2014, 14, 1917-1922.	6.0	11
32	Direct detection of cancer biomarkers in blood using a "place n play―modular polydimethylsiloxane pump. Biomicrofluidics, 2013, 7, 34105.	2.4	10
33	A hand-powered microfluidic system for portable and low-waste sample discretization. Lab on A Chip, 2021, 21, 3429-3437.	6.0	10
34	Investigating the Nucleation Kinetics of Calcium Carbonate Using a Zero-Water-Loss Microfluidic Chip. Crystal Growth and Design, 2020, 20, 2787-2795.	3.0	9
35	Design, simulation, and optimization of a miniaturized device for sizeâ€fractioned DNA extraction. Electrophoresis, 2007, 28, 4661-4667.	2.4	8
36	An equipment-free polydimethylsiloxane microfluidic spotter for fabrication of microarrays. Biomicrofluidics, 2014, 8, 026501.	2.4	8

#	Article	IF	Citations
37	Optimization of micromilled channels for microfluidic applications using gas-blowing-assisted PDMS coating. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	8
38	A facile and rapid route to self-digitization of samples into a high density microwell array for digital bioassays. Talanta, 2021, 233, 122589.	5.5	7
39	CNT-coated magnetic self-assembled elastomer micropillar arrays for sensing broad-range pressures. Nanotechnology, 2020, 31, 435501.	2.6	4
40	Fabrication of Pyramid-Shaped Three-Dimensional Flexible Microelectrode Array for Improved Neural Interfacing. Sensor Letters, 2009, 7, 102-109.	0.4	3
41	A universal approach for irreversible bonding of rigid substrate-based microfluidic devices at room temperature. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	2
42	A Sessile Drop Method for Facile and Robust Spheroid Cultures. Advanced Materials Interfaces, 2021, 8, 2100972.	3.7	2
43	A sandwich SERS detection system based on optical convergence and synergistic enhancement effects. Analyst, The, 2021, 146, 6132-6138.	3.5	2
44	Oil-Triggered and Template-Confined Dewetting for Facile and Low-Loss Sample Digitization. ACS Applied Materials & Digitization. ACS Applied Mater	8.0	2
45	A micromachine-based assembly of tungsten multichannel electrodes for neural recording. , 2008, , .		1
46	Development of Flexible Neural Microelectode Arrays Based on Parylene for Retinal Prosthesis. , 2008, , .		1
47	Curved SU-8 structure fabrication based on the acid-diffusion effect. , 2011, , .		1
48	In vitro Biocompatibility of a Platinum-Electrode Embedded Photosensitive Polyimide (Durimide) Retinal Prosthesis. Current Eye Research, 2012, 37, 1036-1044.	1.5	1
49	Nanogap Electrode-Enabled Versatile Electrokinetic Manipulation of Nanometric Species in Fluids. Biosensors, 2022, 12, 451.	4.7	1
50	Design of a PMMA Chip for Selective Extraction of Size-Fractioned DNA. , 2006, , .		0
51	A SANDWICH-INJECTION METHOD FOR MICROCHIP ELECTROPHORESIS. Nano, 2007, 02, 373-381.	1.0	0
52	Encapsulation and Evaluation of a MEMS-Based Flexible Microelectrode Array for Acute In-Vivo Experiment., 2009,,.		0
53	Fabrication of Carbon Nanowire Arrays Using Inhomogeneous Dissolution-Diffusion Kinetics and Photoresist Pyrolysis. Journal of Nanoscience and Nanotechnology, 2015, 15, 6621-6627.	0.9	0
54	A Flexible Thin-film Microelectrode for Optic-Nerve Visual Prosthesis., 2008,, 317-322.		О