Ronghao Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2300917/publications.pdf

Version: 2024-02-01

840776 1058476 14 555 11 14 citations h-index g-index papers 14 14 14 686 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta, 2017, 246, 1215-1231.	3.2	124
2	Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell, Tissue and Organ Culture, 2014, 119, 565-577.	2.3	104
3	A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants. Scientific Reports, 2017, 7, 11721.	3.3	67
4	Overexpression of a maize MYB48 gene confers drought tolerance in transgenic arabidopsis plants. Journal of Plant Biology, 2017, 60, 612-621.	2.1	53
5	Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice. Plant Cell Reports, 2020, 39, 135-148.	5.6	42
6	Genome-wide analysis of the IQD gene family in maize. Molecular Genetics and Genomics, 2016, 291, 543-558.	2.1	35
7	Identification and Expression Analysis of BURP Domain-Containing Genes in Medicago truncatula. Frontiers in Plant Science, 2016, 7, 485.	3.6	32
8	Global transcriptome and weighted gene co-expression network analyses reveal hybrid-specific modules and candidate genes related to plant height development in maize. Plant Molecular Biology, 2018, 98, 187-203.	3.9	23
9	Mutation of ZmWRKY86 confers enhanced salt stress tolerance in maize. Plant Physiology and Biochemistry, 2021, 167, 840-850.	5.8	19
10	A novel GRAS transcription factor, ZmGRAS20, regulates starch biosynthesis in rice endosperm. Physiology and Molecular Biology of Plants, 2017, 23, 143-154.	3.1	18
11	Genome-wide association study of maize plant architecture using F1 populations. Plant Molecular Biology, 2019, 99, 1-15.	3.9	17
12	Genome-wide association study leads to novel genetic insights into resistance to Aspergillus flavus in maize kernels. BMC Plant Biology, 2020, 20, 206.	3.6	8
13	A Moso Bamboo Drought-Induced 19 Protein, PeDi19-4, Enhanced Drought and Salt Tolerance in Plants via the ABA-Dependent Signaling Pathway. Plant and Cell Physiology, 2019, 60, e1-e14.	3.1	7
14	Overexpression of the maize <i>WRKY114</i> gene in transgenic rice reduce plant height by regulating the biosynthesis of GA. Plant Signaling and Behavior, 2021, 16, 1967635.	2.4	6