
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/230077/publications.pdf Version: 2024-02-01

FVA MONDOY

#	Article	IF	CITATIONS
1	Thermally propagated Al contacts on SiGe nanowires characterized by electron beam induced current in a scanning transmission electron microscope. Nanotechnology, 2022, 33, 035712.	2.6	0
2	Electron beam pumped light emitting devices. Journal Physics D: Applied Physics, 2022, 55, 273003.	2.8	5
3	The Role of the Built-In Electric Field in Recombination Processes of GaN/AlGaN Quantum Wells: Temperature- and Pressure-Dependent Study of Polar and Non-Polar Structures. Materials, 2022, 15, 2756.	2.9	1
4	Reduction of the lasing threshold in optically pumped AlGaN/GaN lasers with two-step etched facets. Semiconductor Science and Technology, 2022, 37, 075013.	2.0	2
5	Solubility Limit of Ge Dopants in AlGaN: A Chemical and Microstructural Investigation Down to the Nanoscale. ACS Applied Materials & amp; Interfaces, 2021, 13, 4165-4173.	8.0	7
6	Improvement of critical temperature of niobium nitride deposited on 8-inch silicon wafers thanks to an AlN buffer layer. Superconductor Science and Technology, 2021, 34, 045002.	3.5	4
7	Study of AlxGa1-xN/AlN (0 ≤ ≤0.1) quantum dots for the fabrication of E-beam pumped UV emitters. , 2021, , .		1
8	Development of AlGaN/GaN heterostructures for e-beam pumped UV lasers. , 2021, , .		1
9	AlGaN/GaN asymmetric graded-index separate confinement heterostructures designed for electron-beam pumped UV lasers. Optics Express, 2021, 29, 13084.	3.4	5
10	Electron beam induced current microscopy of silicon <i>p–n</i> junctions in a scanning transmission electron microscope. Journal of Applied Physics, 2021, 129, .	2.5	8
11	Sub-250Âfs passively mode-locked ultralong ring fibre oscillators. Optics and Laser Technology, 2021, 138, 106848.	4.6	7
12	Critical Evaluation of Various Spontaneous Polarization Models and Induced Electric Fields in III-Nitride Multi-Quantum Wells. Materials, 2021, 14, 4935.	2.9	6
13	Performance enhancement of an ultrafast all-fiber laser based on an InN saturable absorber using GRIN coupling. Optics Express, 2021, 29, 29357.	3.4	6
14	Non-polar GaN/AlGaN quantum-well polariton laser at room temperature. Physical Review B, 2021, 104, .	3.2	2
15	Decorrelation of internal quantum efficiency and lasing threshold in AlGaN-based separate confinement heterostructures for UV emission. Applied Physics Letters, 2021, 119, 151103.	3.3	2
16	High energy ultrafast all-fiber laser based on InN-GRIN saturable absorber. , 2021, , .		0
17	Design of AlGaN/AlN Dotâ€inâ€aâ€Wire Heterostructures for Electronâ€Pumped UV Emitters. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900714.	1.8	4
18	Intersubband transitions in GaN-based heterostructures. , 2020, , 539-565.		0

18 Intersubband transitions in GaN-based heterostructures. , 2020, , 539-565.

#	Article	IF	CITATIONS
19	Correlated Electro-Optical and Structural Study of Electrically Tunable Nanowire Quantum Dot Emitters. Nano Letters, 2020, 20, 314-319.	9.1	3
20	InGaN Quantum Dots Studied by Correlative Microscopy Techniques for Enhanced Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 10133-10143.	5.0	5
21	High-Quality, InN-Based, Saturable Absorbers for Ultrafast Laser Development. Applied Sciences (Switzerland), 2020, 10, 7832.	2.5	4
22	Wurtzite quantum well structures under high pressure. Journal of Applied Physics, 2020, 128, .	2.5	4
23	UV Emission from GaN Wires with <i>m</i> -Plane Core–Shell GaN/AlGaN Multiple Quantum Wells. ACS Applied Materials & Interfaces, 2020, 12, 44007-44016.	8.0	16
24	Multi-microscopy nanoscale characterization of the doping profile in a hybrid Mg/Ge-doped tunnel junction. Nanotechnology, 2020, 31, 465706.	2.6	6
25	Hydrostatic pressure dependence of indirect and direct excitons in InGaN/GaN quantum wells. Physical Review B, 2020, 101, .	3.2	6
26	Correlated and in-situ electrical transmission electron microscopy studies and related membrane-chip fabrication. Nanotechnology, 2020, 31, 472001.	2.6	8
27	Transferrable dielectric DBR membranes for versatile GaN-based polariton and VCSEL technology. Microelectronic Engineering, 2020, 228, 111276.	2.4	2
28	Instantaneous decay rate analysis of time resolved photoluminescence (TRPL): Application to nitrides and nitride structures. Journal of Alloys and Compounds, 2020, 823, 153791.	5.5	5
29	Detection of Si doping in the AlN/GaN MQW using Super X – EDS measurements. Micron, 2020, 134, 102864.	2.2	3
30	Assessment of AlGaN/AlN superlattices on GaN nanowires as active region of electron-pumped ultraviolet sources. Nanotechnology, 2020, 31, 204001.	2.6	14
31	Internal quantum efficiency of AlGaN/AlN quantum dot superlattices for electron-pumped ultraviolet sources. Nanotechnology, 2020, 31, 505205.	2.6	6
32	Effect of Bias on the Response of GaN Axial p–n Junction Single-Nanowire Photodetectors. Nano Letters, 2019, 19, 5506-5514.	9.1	31
33	Novel InN-Based SESAMs with Ultra-Short Time Response. , 2019, , .		0
34	Absorption in ultrathin GaN-based membranes: The role of standing wave effects. Journal of Applied Physics, 2019, 126, 083109.	2.5	2
35	Electrical and optical properties of heavily Ge-doped AlGaN. Journal Physics D: Applied Physics, 2019, 52, 125101.	2.8	22
36	On intrinsic Stokes shift in wide GaN/AlGaN polar quantum wells. Semiconductor Science and Technology, 2019, 34, 075021.	2.0	1

#	Article	IF	CITATIONS
37	Design and implementation of bound-to-quasibound GaN/AlGaN photovoltaic quantum well infrared photodetectors operating in the short wavelength infrared range at room temperature. Journal of Applied Physics, 2019, 125, 174505.	2.5	10
38	Nanowire photodetectors based on wurtzite semiconductor heterostructures. Semiconductor Science and Technology, 2019, 34, 053002.	2.0	24
39	Improved GaN Quantum Well Microcavities for Robust Room Temperature Polaritonics. Physica Status Solidi (B): Basic Research, 2019, 256, 1800716.	1.5	5
40	Megawatt Peak-Power Femtosecond Ultralong Ring Fibre Laser with InN SESAM. , 2019, , .		1
41	Improvement of the critical temperature of NbTiN films on III-nitride substrates. Superconductor Science and Technology, 2019, 32, 035008.	3.5	10
42	Near- and mid-infrared intersubband absorption in top-down GaN/AlN nano- and micro-pillars. Nanotechnology, 2019, 30, 054002.	2.6	5
43	Effect of the residual doping on the performance of InN epilayers as saturable absorbers for ultrafast lasers at 155Âμm. Optical Materials Express, 2019, 9, 2785.	3.0	2
44	Ultrafast Fiber Laser Using InN as Saturable Absorber Mirror. Journal of Lightwave Technology, 2018, 36, 2175-2182.	4.6	11
45	Effect of the nanowire diameter on the linearity of the response of GaN-based heterostructured nanowire photodetectors. Nanotechnology, 2018, 29, 255204.	2.6	15
46	<i>In situ</i> biasing and off-axis electron holography of a ZnO nanowire. Nanotechnology, 2018, 29, 025710.	2.6	10
47	Advanced Superconducting Nanowire Single Photon Detectors for Photonic Quantum Technologies. Proceedings (mdpi), 2018, 2, .	0.2	Ο
48	GaN/AlGaN Photovoltaic Quantum Well Infrared Photodetector at 2.3 \hat{l} 4m. , 2018, , .		0
49	Switching of exciton character in double InGaN/GaN quantum wells. Physical Review B, 2018, 98, .	3.2	16
50	Intersubband absorption in GaN nanowire heterostructures at mid-infrared wavelengths. Nanotechnology, 2018, 29, 385201.	2.6	5
51	Polarization-insensitive fiber-coupled superconducting-nanowire single photon detector using a high-index dielectric capping layer. Optics Express, 2018, 26, 17697.	3.4	14
52	Infrared emitters using III-nitride semiconductors. , 2018, , 587-617.		3
53	Quality improvement of AlInN/p-Si heterojunctions with AlN buffer layer deposited by RF-sputtering. Journal of Alloys and Compounds, 2018, 769, 824-830.	5.5	15
54	Experimental and theoretical analysis of influence of barrier composition on optical properties of GaN/AlGaN multi-quantum wells: Temperature- and pressure-dependent photoluminescence studies. Journal of Alloys and Compounds, 2018, 769, 1064-1071.	5.5	9

#	Article	IF	CITATIONS
55	Study of Absorption Saturation in InN Thin Films through the Z-Scan Technique at 1.55 μm. , 2018, , .		0
56	Development of AlInN photoconductors deposited by sputtering. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600780.	1.8	0
57	High absorption efficiency and polarization-insensitivity in superconducting-nanowire single-photon detectors. Proceedings of SPIE, 2017, , .	0.8	0
58	Experimental and first-principles studies of high-pressure effects on the structural, electronic, and optical properties of semiconductors and lanthanide doped solids. Japanese Journal of Applied Physics, 2017, 56, 05FA02.	1.5	7
59	P-i-n InGaN homojunctions (10–40% In) synthesized by plasma-assisted molecular beam epitaxy with extended photoresponse to 600 nm. Solar Energy Materials and Solar Cells, 2017, 160, 355-360.	6.2	14
60	Design of polarization-insensitive superconducting single photon detectors with high-index dielectrics. Superconductor Science and Technology, 2017, 30, 035005.	3.5	16
61	Bias-Controlled Spectral Response in GaN/AIN Single-Nanowire Ultraviolet Photodetectors. Nano Letters, 2017, 17, 4231-4239.	9.1	45
62	Short-wave infrared (λ = 3 <i>μ</i> m) intersubband polaritons in the GaN/AlN system. Applied Ph Letters, 2017, 110, .	ysics 3.3	12
63	<i>Ab initio</i> and experimental studies of polarization and polarization related fields in nitrides and nitride structures. AlP Advances, 2017, 7, .	1.3	23
64	Intersubband absorption in Si―and Geâ€doped GaN/AlN heterostructures in selfâ€assembled nanowire and 2D layers. Physica Status Solidi (B): Basic Research, 2017, 254, 1600734.	1.5	16
65	Effect of Al incorporation in nonpolar <i>m</i> -plane GaN/AlGaN multi-quantum-wells using plasma-assisted molecular-beam epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600849.	1.8	6
66	In-rich Al _{<i>x</i>} In _{1â^`<i>x</i>} N grown by RF-sputtering on sapphire: from closely-packed columnar to high-surface quality compact layers. Journal Physics D: Applied Physics, 2017, 50, 065101.	2.8	15
67	Near-Infrared Intersubband Photodetection in GaN/AlN Nanowires. Nano Letters, 2017, 17, 6954-6960.	9.1	33
68	Effect of Ge-doping on the short-wave, mid- and far-infrared intersubband transitions in GaN/AlGaN heterostructures. Semiconductor Science and Technology, 2017, 32, 125002.	2.0	6
69	Gallium kinetics on <i>m</i> -plane GaN. Applied Physics Letters, 2017, 111, .	3.3	11
70	Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap. Scientific Reports, 2017, 7, 5542.	3.3	23
71	Bias-Controlled Optical Transitions in GaN/AlN Nanowire Heterostructures. ACS Nano, 2017, 11, 8758-8767.	14.6	10
72	Effect of doping on the intersubband absorption in Si- and Ge-doped GaN/AlN heterostructures. Nanotechnology, 2017, 28, 405204.	2.6	24

#	Article	lF	CITATIONS
73	Carrier Localization in GaN/AlN Quantum Dots As Revealed by Three-Dimensional Multimicroscopy. Nano Letters, 2017, 17, 4261-4269.	9.1	14
74	Multi-excitonic emission from Stranski-Krastanov GaN/AlN quantum dots inside a nanoscale tip. Applied Physics Letters, 2017, 111, .	3.3	11
75	Sub-250 fs, 650 kW Peak Power Harmonic Mode-Locked Fiber Laser with InN-based SESAM. , 2017, , .		1
76	Widely power-tunable polarization-independent ultrafast mode-locked fiber laser using bulk InN as saturable absorber. Optics Express, 2017, 25, 5366.	3.4	12
77	Sub-200 fs mode-locked fiber laser with InN-based SESAM. , 2017, , .		1
78	Intersubband Optoelectronics Using III-Nitride Semiconductors. Series in Optics and Optoelectronics, 2017, , 615-644.	0.0	1
79	A New Ultrafast and High Peak Power Fiber Laser operating at 1.5 µm using InN as Saturable Absorber. , 2017, , .		0
80	Nitride-Based Devices at Telecom Wavelengths. , 2017, , .		1
81	Design of broadband high-efficiency superconducting-nanowire single photon detectors. Superconductor Science and Technology, 2016, 29, 065016.	3.5	43
82	High pressure and time resolved studies of optical properties of n-type doped GaN/AlN multi-quantum wells: Experimental and theoretical analysis. Journal of Applied Physics, 2016, 120, .	2.5	14
83	Short-wavelength, mid- and far-infrared intersubband absorption in nonpolar GaN/Al(Ga)N heterostructures. Japanese Journal of Applied Physics, 2016, 55, 05FG05.	1.5	9
84	Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness. Applied Physics Letters, 2016, 108, .	3.3	24
85	Correlation of optical and structural properties of GaN/AlN multi-quantum wells— <i>Ab initio</i> and experimental study. Journal of Applied Physics, 2016, 119, 015703.	2.5	27
86	Impact of recess etching and surface treatments on ohmic contacts regrown by molecular-beam epitaxy for AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2016, 109, .	3.3	22
87	Ge doping of GaN beyond the Mott transition. Journal Physics D: Applied Physics, 2016, 49, 445301.	2.8	36
88	Study of high In-content AlInN deposition on p-Si(111) by RF-sputtering. Japanese Journal of Applied Physics, 2016, 55, 05FB07.	1.5	16
89	UV Photosensing Characteristics of Nanowire-Based GaN/AlN Superlattices. Nano Letters, 2016, 16, 3260-3267.	9.1	53
90	Composition Analysis of III-Nitrides at the Nanometer Scale: Comparison of Energy Dispersive X-ray Spectroscopy and Atom Probe Tomography. Nanoscale Research Letters, 2016, 11, 461.	5.7	17

#	Article	IF	CITATIONS
91	Illâ€nitrideâ€based waveguides for ultrafast allâ€optical signal processing at 1.55 μm. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1269-1275.	1.8	2
92	Effect of doping on the far-infrared intersubband transitions in nonpolar <i>m</i> -plane GaN/AlGaN heterostructures. Nanotechnology, 2016, 27, 145201.	2.6	16
93	Morphology and arrangement of InN nanocolumns deposited by radio-frequency sputtering: Effect of the buffer layer. Journal of Crystal Growth, 2016, 434, 13-18.	1.5	14
94	Long-lived excitons in GaN/AlN nanowire heterostructures. Physical Review B, 2015, 91, .	3.2	17
95	Nonpolar <i>m</i> -plane GaN/AlGaN heterostructures with intersubband transitions in the 5–10 THz band. Nanotechnology, 2015, 26, 435201.	2.6	26
96	Effect of the barrier thickness on the performance of multiple-quantum-well InGaN photovoltaic cells. Japanese Journal of Applied Physics, 2015, 54, 072302.	1.5	19
97	Intersubband transitions in nonpolar GaN/Al(Ga)N heterostructures in the short- and mid-wavelength infrared regions. Journal of Applied Physics, 2015, 118, 014309.	2.5	26
98	Infrared emitters made from III-nitride semiconductors. , 2014, , 533-565.		4
99	High In-content InGaN layers synthesized by plasma-assisted molecular-beam epitaxy: Growth conditions, strain relaxation, and In incorporation kinetics. Journal of Applied Physics, 2014, 116, .	2.5	36
100	Alloy inhomogeneity and carrier localization in AlGaN sections and AlGaN/AlN nanodisks in nanowires with 240–350 nm emission. Applied Physics Letters, 2014, 105, .	3.3	34
101	Effect of the quantum well thickness on the performance of InGaN photovoltaic cells. Applied Physics Letters, 2014, 105, .	3.3	60
102	High Precision, Electrochemical Detection of Reversible Binding of Recombinant Proteins on Wide Bandgap GaN Electrodes Functionalized with Biomembrane Models. Advanced Functional Materials, 2014, 24, 4927-4934.	14.9	4
103	Enhanced room-temperature mid-ultraviolet emission from AlGaN/AlN Stranski-Krastanov quantum dots. Journal of Applied Physics, 2014, 116, 023502.	2.5	14
104	Ultra-smooth GaN membranes by photo-electrochemical etching for photonic applications. Journal of Materials Science, 2014, 49, 4018-4024.	3.7	11
105	THz intersubband transitions in AlGaN/GaN multiâ€quantumâ€wells. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 761-764.	1.8	11
106	Pseudo-square AlGaN/GaN quantum wells for terahertz absorption. Applied Physics Letters, 2014, 105, 131106.	3.3	25
107	Intraband Absorption in Self-Assembled Ge-Doped GaN/AlN Nanowire Heterostructures. Nano Letters, 2014, 14, 1665-1673.	9.1	33
108	Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration. Applied Physics Express, 2014, 7, 032301.	2.4	18

#	Article	IF	CITATIONS
109	High-quality NbN nanofilms on a GaN/AlN heterostructure. AIP Advances, 2014, 4, 107123.	1.3	11
110	Two-step method for the deposition of AlN by radio frequency sputtering. Thin Solid Films, 2013, 545, 149-153.	1.8	17
111	Electroabsorption and refractive index modulation induced by intersubband transitions in GaN/AlN heterostructure waveguides. , 2013, , .		0
112	GaN/AlGaN waveguide quantum cascade photodetectors at λ â‰^ 1.55 μm with enhanced respon â^¼40 GHz frequency bandwidth. Applied Physics Letters, 2013, 102, .	sivity and	55
113	Photocurrent Phenomena in Nanoribbon InAlN/GaN High Electron Mobility Transistors. Japanese Journal of Applied Physics, 2013, 52, 08JE19.	1.5	0
114	All-dielectric GaN microcavity: Strong coupling and lasing at room temperature. Applied Physics Letters, 2013, 102, 101113.	3.3	52
115	Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum wells. Journal of Applied Physics, 2013, 113, .	2.5	22
116	InGaN/GaN multipleâ€quantum well heterostructures for solar cells grown by MOVPE: case studies. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 350-354.	0.8	7
117	Environmental sensitivity of <i>n-i-n</i> and undoped single GaN nanowire photodetectors. Applied Physics Letters, 2013, 102, .	3.3	21
118	III-nitride semiconductors for intersubband optoelectronics: a review. Semiconductor Science and Technology, 2013, 28, 074022.	2.0	159
119	III-nitride nanostructures for optical gas detection and pH sensing. Proceedings of SPIE, 2013, , .	0.8	4
120	Measuring the refractive index around intersubband transition resonance in GaN/AlN multi quantum wells. Optics Express, 2013, 21, 3800.	3.4	6
121	Waveguide saturable absorbers at 155 μm based on intraband transitions in GaN/AlN QDs. Optics Express, 2013, 21, 27578.	3.4	16
122	Polarization fields in GaN/AlN nanowire heterostructures studied by off-axis holography. Journal of Physics: Conference Series, 2013, 471, 012019.	0.4	4
123	AlGaN/AlN quantum dots for UV light emitters. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 285-288.	0.8	11
124	Terahertz absorbing AlGaN/GaN multi-quantum-wells: Demonstration of a robust 4-layer design. Applied Physics Letters, 2013, 103, 091108.	3.3	27
125	Single GaN-Based Nanowires for Photodetection and Sensing Applications. Japanese Journal of Applied Physics, 2013, 52, 11NG01.	1.5	12
126	Photovoltaic Response of InGaN/GaN Multiple-Quantum Well Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 08JH05.	1.5	22

#	Article	IF	CITATIONS
127	InGaN/GaN quantum dots as optical probes for the electric field at the GaN/electrolyte interface. Journal of Applied Physics, 2013, 114, 074313.	2.5	4
128	GaN-based nanowire photodetectors. Proceedings of SPIE, 2012, , .	0.8	2
129	Electroabsorption and refractive index modulation induced by intersubband transitions in GaN/AlN multiple quantum wells. Optics Express, 2012, 20, 12541.	3.4	13
130	Coupling of intersubband transitions to zone-folded acoustic phonons in a GaN/AlN superlattice. Physical Review B, 2012, 85, .	3.2	4
131	Correlated Structural, Electronic, and Optical Properties of AlN/GaN Multiple Quantum Disks in GaN Nanowires. Applied Physics Express, 2012, 5, 025001.	2.4	6
132	Highly spatially resolved Cathodoluminescence of Single GaN Quantum Dots directly performed in a Scanning Transmission Electron Microscope. Microscopy and Microanalysis, 2012, 18, 1878-1879.	0.4	2
133	Thermal stability of the deep ultraviolet emission from AlGaN/AlN Stranski-Krastanov quantum dots. Applied Physics Letters, 2012, 101, .	3.3	22
134	Resonant Tunneling Transport in a GaN/AlN Multiple-Quantum-Well Structure. Applied Physics Express, 2012, 5, 052203.	2.4	17
135	Room-Temperature Photodetection Dynamics of Single GaN Nanowires. Nano Letters, 2012, 12, 172-176.	9.1	139
136	Carrier localization in InN/InGaN multiple-quantum wells with high In-content. Applied Physics Letters, 2012, 101, 062109.	3.3	20
137	Correlation of Polarity and Crystal Structure with Optoelectronic and Transport Properties of GaN/AlN/GaN Nanowire Sensors. Nano Letters, 2012, 12, 5691-5696.	9.1	73
138	Structure and strain state of polar and semipolar InGaN quantum dots. Applied Surface Science, 2012, 260, 7-12.	6.1	7
139	Morphology and origin of V-defects in semipolar (11–22) InGaN. Journal of Crystal Growth, 2012, 339, 1-7.	1.5	10
140	III-nitride intersubband photonics. Proceedings of SPIE, 2012, , .	0.8	0
141	Infrared photoluminescence of high Inâ€content InN/InGaN multipleâ€quantumâ€wells. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 17-20.	1.8	4
142	Responsivity and photocurrent dynamics in single GaN nanowires. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 642-645.	0.8	6
143	Structural properties of semipolar InGaN/GaN quantum dot superlattices grown by plasma-assisted MBE. Microelectronic Engineering, 2012, 90, 108-111.	2.4	8
144	Improvement of InN layers deposited on Si(111) by RF sputtering using a low-growth-rate InN buffer layer. Thin Solid Films, 2012, 520, 2805-2809.	1.8	16

#	Article	IF	CITATIONS
145	Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron. Applied Physics Letters, 2011, 99, .	3.3	32
146	Intersubband spectroscopy probing higher order interminiband transitions in AlN-GaN-based superlattices. Applied Physics Letters, 2011, 98, 071104.	3.3	5
147	Bragg polariton luminescence from a GaN membrane embedded in all dielectric microcavity. Applied Physics Letters, 2011, 98, 221101.	3.3	10
148	Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy. Journal of Applied Physics, 2011, 109, 103501.	2.5	63
149	III-nitride semiconductors for intersubband devices. , 2011, , .		1
150	Strain relaxation in GaN/Al0.1Ga0.9N superlattices for mid-infrared intersubband absorption. Journal of Crystal Growth, 2011, 323, 64-67.	1.5	6
151	Highâ€surfaceâ€quality nanocrystalline InN layers deposited on GaN templates by RF sputtering. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 65-69.	1.8	6
152	Growth and characterization of polar (0001) and semipolar (11â^'22) InGaN/GaN quantum dots. Journal of Crystal Growth, 2011, 323, 161-163.	1.5	11
153	Strong suppression of internal electric field in GaN/AlGaN multi-layer quantum dots in nanowires. Applied Physics Letters, 2011, 99, .	3.3	20
154	Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths. Applied Physics Letters, 2011, 98, .	3.3	27
155	Improved luminescence and thermal stability of semipolar (11-22) InGaN quantum dots. Applied Physics Letters, 2011, 98, 201911.	3.3	19
156	Strain relaxation in GaN/AlxGa1-xN superlattices grown by plasma-assisted molecular-beam epitaxy. Journal of Applied Physics, 2011, 110, .	2.5	29
157	Si-interdiffusion in heavily doped AlN-GaN-based quantum well intersubband photodetectors. Applied Physics Letters, 2011, 98, 241101.	3.3	4
158	Investigation of the negative differential resistance reproducibility in AlN/GaN double-barrier resonant tunnelling diodes. Applied Physics Letters, 2011, 99, 182109.	3.3	34
159	Photocurrent characterization of intraband transition in GaNVAIN quantum dots. Journal of Physics: Conference Series, 2010, 245, 012068.	0.4	0
160	Polar and semipolar III-nitrides for long wavelength intersubband devices. Proceedings of SPIE, 2010, , .	0.8	4
161	Performance improvement of AlN/GaN-based intersubband detectors thanks to quantum dot active regions. Proceedings of SPIE, 2010, , .	0.8	0
162	Intersubband Transition-Based Processes and Devices in AlN/GaN-Based Heterostructures. Proceedings of the IEEE, 2010, 98, 1234-1248.	21.3	40

#	Article	IF	CITATIONS
163	Influence of deposition conditions on nanocrystalline InN layers synthesized on Si(111) and GaN templates by RF sputtering. Journal of Crystal Growth, 2010, 312, 2689-2694.	1.5	13
164	GaN/AlGaN nanostructures for intersubband optoelectronics. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1421-1424.	1.8	4
165	GaN/AlN quantum disc singleâ€nanowire photodetectors. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1323-1327.	1.8	10
166	Interfacial structure of semipolar AlN grown on <i>m</i> -plane sapphire by MBE. Physica Status Solidi (B): Basic Research, 2010, 247, 1637-1640.	1.5	14
167	Intersubband optics in GaN-based nanostructures - physics and applications. Physica Status Solidi (B): Basic Research, 2010, 247, 1622-1627.	1.5	12
168	Novel InN/InGaN multiple quantum well structures for slow-light generation at telecommunication wavelengths. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 100-103.	0.8	1
169	The microstructure and properties of InN layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1301-1304.	0.8	10
170	Pâ€ŧype doping of semipolar GaN(11\$ ar 2 \$2) by plasmaâ€assisted molecularâ€beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1913-1915.	0.8	6
171	Effect of doping on the mid-infrared intersubband absorption in GaN/AlGaN superlattices grown on Si(111) templates. Applied Physics Letters, 2010, 96, .	3.3	42
172	Indium kinetics during the plasma-assisted molecular beam epitaxy of semipolar (11â^'22) InGaN layers. Applied Physics Letters, 2010, 96, 181907.	3.3	27
173	GaN-based quantum cascade photodetector with 1.5â€[micro sign]m peak detection wavelength. Electronics Letters, 2010, 46, 1685.	1.0	16
174	Identification of Ill–N nanowire growth kinetics via a marker technique. Nanotechnology, 2010, 21, 295605.	2.6	57
175	Homogeneous linewidth of the intraband transition at 1.55â€,μm in GaN/AlN quantum dots. Applied Physics Letters, 2010, 97, 061903.	3.3	6
176	Defect structure in heteroepitaxial semipolar (11ar {2} 2) (Ga, Al)N. Journal of Physics Condensed Matter, 2010, 22, 355802.	1.8	21
177	Performance Improvement of AlN–GaN-Based Intersubband Detectors by Using Quantum Dots. IEEE Photonics Technology Letters, 2010, 22, 1087-1089.	2.5	8
178	Quantum Transport in GaN/AlN Double-Barrier Heterostructure Nanowires. Nano Letters, 2010, 10, 3545-3550.	9.1	71
179	Extended defects in nitride layers, influence on the quantum wells and quantum dots. Proceedings of SPIE, 2010, , .	0.8	0
180	Review of nitride infrared intersubband devices. Proceedings of SPIE, 2010, , .	0.8	2

#	Article	IF	CITATIONS
181	Terahertz intersubband absorption in GaN/AlGaN step quantum wells. Applied Physics Letters, 2010, 97, .	3.3	87
182	Negative photoconductivity due to intraband transitions in GaN/AlN quantum dots. Journal of Applied Physics, 2010, 108, 104512.	2.5	4
183	Morphology and strain of self-assembled semipolar GaN quantum dots in (112Â ⁻ 2) AlN. Journal of Applied Physics, 2010, 108, .	2.5	20
184	GaN quantum dots as optical transducers for chemical sensors. Applied Physics Letters, 2009, 94, 113108.	3.3	17
185	Stranski–Krastanow growth of (112Â⁻2)-oriented GaN/AlN quantum dots. Applied Physics Letters, 2009, 94, 111901.	3.3	15
186	Mg doping and its effect on the semipolar GaN(112Â ⁻ 2) growth kinetics. Applied Physics Letters, 2009, 95, 171908.	3.3	20
187	GaN/AlGaN intersubband optoelectronic devices. New Journal of Physics, 2009, 11, 125023.	2.9	84
188	Midinfrared intersubband absorption in GaN/AlGaN superlattices on Si(111) templates. Applied Physics Letters, 2009, 95, .	3.3	44
189	Monolithically integrated UV/IR-photodetectors based on an AlN/GaN-based superlattice grown on an AlGaN buffer layer. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S818-S821.	0.8	1
190	Room temperature intraband Raman emission and ultrafast carrier relaxation in GaN/AlN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S650-S653.	0.8	0
191	Strain effects in GaN/AlN short-period superlattices for intersubband optoelectronics. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S549-S552.	0.8	6
192	Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.51¼m. Microelectronics Journal, 2009, 40, 349-352.	2.0	4
193	Strain effects in GaN/AlN multi-quantum-well structures for infrared optoelectronics. Microelectronics Journal, 2009, 40, 336-338.	2.0	6
194	Electronic transport through GaN/AlN single barriers: Effect of polarisation and dislocations. Microelectronics Journal, 2009, 40, 339-341.	2.0	6
195	PAMBE growth of (112Â ⁻ 2)-oriented GaN/AlN nanostructures on m-sapphire. Microelectronics Journal, 2009, 40, 325-327.	2.0	2
196	Photodetectors based on intersubband transitions using III-nitride superlattice structures. Journal of Physics Condensed Matter, 2009, 21, 174208.	1.8	27
197	Suppression of nonradiative processes in long-lived polar GaN/AlN quantum dots. Applied Physics Letters, 2009, 95, 131903.	3.3	39
198	Ultrafast relaxation and optical saturation of intraband absorption of GaN/AlN quantum dots. Applied Physics Letters, 2009, 94, .	3.3	18

#	Article	IF	CITATIONS
199	Photocurrent spectroscopy of bound-to-bound intraband transitions in GaN/AlN quantum dots. Physical Review B, 2009, 80, .	3.2	12
200	GaN/AlGaN intersubband optoelectronic devices at telecommunication wavelengths. Proceedings of SPIE, 2009, , .	0.8	1
201	Strain relaxation in short-period polar GaN/AlN superlattices. Journal of Applied Physics, 2009, 106, 013526.	2.5	56
202	Molecular beam epitaxy of semipolar AlN(\$\$11ar{2}2\$\$) and GaN(\$\$11ar{2}2\$\$) on m-sapphire. Journal of Materials Science: Materials in Electronics, 2008, 19, 805-809.	2.2	9
203	Latest developments in GaN-based quantum devices for infrared optoelectronics. Journal of Materials Science: Materials in Electronics, 2008, 19, 821-827.	2.2	12
204	Biâ€stable behaviour in GaNâ€based resonant tunnelling diode structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 431-434.	0.8	17
205	Near-infrared intersubband emission from GaN/AlN quantum dots and quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2120-2122.	0.8	4
206	Electro-optical intersubband modulators at telecommunication wavelengths based on GaN/AlN quantum wells. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1093-1095.	1.8	1
207	MBE growth of AlN/GaNâ€based photovoltaic intersubband photodetectors. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1060-1063.	1.8	0
208	Plasma-assisted MBE growth of (112)-oriented GaN/AlN quantum wells on m-sapphire. Physica Status Solidi (B): Basic Research, 2008, 245, 884-886.	1.5	0
209	GaN/AIN short-period superlattices for intersubband optoelectronics: A systematic study of their epitaxial growth, design, and performance. Journal of Applied Physics, 2008, 104, 093501.	2.5	165
210	Near infrared quantum cascade detector in GaNâ^•AlGaNâ^•AlN heterostructures. Applied Physics Letters, 2008, 92, .	3.3	116
211	Intraband emission at λâ‰^1.48μm from GaNâ^AIN quantum dots at room temperature. Applied Physics Letter 2008, 92, 161105.	[°] S, _{3.3}	23
212	Electrooptical Modulator at Telecommunication Wavelengths Based on GaN–AlN Coupled Quantum Wells. IEEE Photonics Technology Letters, 2008, 20, 724-726.	2.5	31
213	Characterization of the Resonant Third-Order Nonlinear Susceptibility of Si-Doped GaN–AlN Quantum Wells and Quantum Dots at 1.5 \$mu\$m. IEEE Photonics Technology Letters, 2008, 20, 1366-1368.	2.5	16
214	High-speed operation of GaN/AlGaN quantum cascade detectors at λâ‰^1.55â€,μm. Applied Physics Letters, 20 93, .)08. 3.3	52
215	High frequency measurements on an AlNâ^•GaN-based intersubband detector at 1550 and 780nm. Applied Physics Letters, 2008, 92, 231104.	3.3	16
216	Ga kinetics in plasma-assisted molecular-beam epitaxy of GaN(112Â ⁻ 2): Effect on the structural and optical properties. Journal of Applied Physics, 2008, 103, .	2.5	30

#	Article	IF	CITATIONS
217	Monolithically integrated AlGaN/GaN/AlN-based solar-blind ultraviolet and near-infrared detectors. Electronics Letters, 2008, 44, 986.	1.0	15
218	Interband and intersubband optical characterization of semipolar (112Â ⁻ 2)-oriented GaN/AlN multiple-quantum-well structures. Applied Physics Letters, 2008, 93, 111906.	3.3	32
219	AlN/GaN-superlattice structures for the fabrication of intersubband detectors in the telecom wavelength range. Proceedings of SPIE, 2008, , .	0.8	1
220	Characterization of the resonant third-order nonlinear susceptibility of Si-doped GaN/AlN quantum wells and quantum dots at 1.5 ŵm. , 2008, , .		0
221	High frequency (f=2.37â€GHz) room temperature operation of 1.55â€[micro sign]m AlNâ^•GaN-based intersubband detector. Electronics Letters, 2007, 43, 185.	1.0	29
222	Hard X-ray Linear Dichroism Using a Quarter Wave Plate for Structural Characterization of Diluted Magnetic Semiconductors. AlP Conference Proceedings, 2007, , .	0.4	1
223	Photovoltaic Detectors in the GaN/AIN Intersubbandsystem operating at 1.55 μm. , 2007, , .		0
224	Third order nonlinear susceptibility of InN at near band-gap wavelengths. Applied Physics Letters, 2007, 90, 091903.	3.3	22
225	Short-wavelength intersubband electroabsorption modulation based on electron tunneling between GaNâ°•AlN coupled quantum wells. Applied Physics Letters, 2007, 90, 223511.	3.3	54
226	GaN Quantum Dots as Optical Transducers in Field Effect Chemical Sensors. , 2007, , .		0
227	Charge distribution and vertical electron transport through GaN/AlN/GaN single-barrier structures. Semiconductor Science and Technology, 2007, 22, 107-112.	2.0	10
228	Wide bandgap UV photodetectors: a short review of devices and applications. , 2007, , .		68
229	GaN/AIN Quantum Wells and Quantum Dots for Unipolar Devices at Telecommunication Wavelengths. AIP Conference Proceedings, 2007, , .	0.4	0
230	Intersubband resonant enhancement of second-harmonic generation in GaN/AlN quantum wells. AIP Conference Proceedings, 2007, , .	0.4	0
231	Short wavelength (λ=2.13μm) intersubband luminescence from GaNâ^•AlN quantum wells at room temperature. Applied Physics Letters, 2007, 90, 121106.	3.3	56
232	Optically nonlinear effects in intersubband transitions of GaNâ^•AlN-based superlattice structures. Applied Physics Letters, 2007, 91, 131115.	3.3	38
233	Plasma-assisted molecular-beam epitaxy of AlN(112Â ⁻ 2) on m sapphire. Applied Physics Letters, 2007, 90, 131909.	3.3	56
234	Observation of hot luminescence and slow intersubband relaxation in GaN/AlGaN multi-quantum-well structures. AIP Conference Proceedings, 2007, , .	0.4	0

#	Article	IF	CITATIONS
235	Intrinsic ferromagnetism in wurtzite (Ga,Mn)N grown by plasma-assisted molecular-beam epitaxy. AIP Conference Proceedings, 2007, , .	0.4	1
236	Plasma-assisted MBE growth of nitride-based intersubband detectors. AIP Conference Proceedings, 2007, , .	0.4	1
237	GaN/AlN electro-optical modulator prototype at telecommunication wavelengths. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1621-1624.	0.8	1
238	Nitride intersubband devices: prospects and recent developments. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1987-1995.	1.8	14
239	Physical Properties of InN for Optically Controlling the Speed of Light. , 2007, , .		0
240	Raman study and theoretical calculations of strain in GaN quantum dot multilayers. Physical Review B, 2006, 73, .	3.2	15
241	Luminescence properties of highly Si-doped AlN. Applied Physics Letters, 2006, 88, 071906.	3.3	36
242	Resonant Raman scattering in self-assembledGaNâ^•AlNquantum dots. Physical Review B, 2006, 74, .	3.2	21
243	Intersubband resonant enhancement of second-harmonic generation in GaNâ^•AlN quantum wells. Applied Physics Letters, 2006, 89, 151101.	3.3	37
244	Room temperature demonstration of GaNâ^•AlN quantum dot intraband infrared photodetector at fiber-optics communication wavelength. Applied Physics Letters, 2006, 88, 143101.	3.3	71
245	Electron confinement in strongly coupled GaNâ^•AlN quantum wells. Applied Physics Letters, 2006, 88, 153113.	3.3	48
246	Systematic experimental and theoretical investigation of intersubband absorption inGaNâ^•AlNquantum wells. Physical Review B, 2006, 73, .	3.2	239
247	Effect of growth temperature on AlGaInN layers: a TEM analysis. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1400-1403.	0.8	0
248	Quantitative strain analysis of GaN/AlN quantum dot multilayers. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1667-1670.	0.8	3
249	Si-doped GaN/AlN quantum dot superlattices for optoelectronics at telecommunication wavelengths. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1754-1758.	1.8	3
250	Optical and theoretical study of strong electron coupling in double GaN/AlN quantum wells. Physica Status Solidi (B): Basic Research, 2006, 243, 1630-1633.	1.5	8
251	GaN/AlGaN superlattices for optoelectronics in the mid-infrared. Physica Status Solidi (B): Basic Research, 2006, 243, 1669-1673.	1.5	0
252	Intraband photodetection at 1.3–1.5 µm in self-organized GaN/AlN quantum dots. Physica Status Solidi (B): Basic Research, 2006, 243, 3993-3997.	1.5	1

#	Article	IF	CITATIONS
253	Plasma-assisted molecular beam epitaxy of wurtzite GaMnN displaying ferromagnetism assessed by means of X-ray magnetic circular dichroism. Superlattices and Microstructures, 2006, 40, 239-245.	3.1	2
254	Effect of Si doping on GaN/AIN multiple-quantum-well structures for intersubband optoelectronics at telecommunication wavelengths. Superlattices and Microstructures, 2006, 40, 306-312.	3.1	8
255	MBE growth of nitride-based photovoltaic intersubband detectors. Superlattices and Microstructures, 2006, 40, 418-425.	3.1	7
256	New developments for nitride unipolar devices at 1.3–1.5 μm wavelengths. Superlattices and Microstructures, 2006, 40, 412-417.	3.1	9
257	GaN/AlN quantum dot photodetectors at 1.3–1.5 μm. Superlattices and Microstructures, 2006, 40, 262-267.	3.1	8
258	Vertical electron transport study in GaN/AlN/GaN heterostructures. Superlattices and Microstructures, 2006, 40, 507-512.	3.1	4
259	Room-temperature intersubband emission of GaN/AlN quantum wells at =2.3â€[micro sign]m. Electronics Letters, 2006, 42, 1308.	1.0	22
260	Comparison of the structural quality in Ga-face and N-face polarity GaN/AlN multiple-quantum-well structures. Semiconductor Science and Technology, 2006, 21, 612-618.	2.0	33
261	Electrically adjustable intersubband absorption of a GaNâ^•AlN superlattice grown on a transistorlike structure. Applied Physics Letters, 2006, 89, 101121.	3.3	37
262	Intrinsic ferromagnetism in wurtzite (Ga,Mn)N semiconductor. Physical Review B, 2006, 74, .	3.2	107
263	Si-doped GaNâ^•AlN quantum dot superlattices for optoelectronics at telecommunication wavelengths. Journal of Applied Physics, 2006, 100, 044326.	2.5	77
264	GaN quantum dots doped with Tb. Applied Physics Letters, 2006, 88, 053102.	3.3	20
265	High-quality AlNâ^•GaN-superlattice structures for the fabrication of narrow-band 1.4 μm photovoltaic intersubband detectors. Applied Physics Letters, 2006, 88, 121112.	3.3	60
266	Observation of hot luminescence and slow inter-sub-band relaxation in Si-doped GaNâ^•AlxGa1â^'xN (x=0.11, 0.25) multi-quantum-well structures. Journal of Applied Physics, 2006, 99, 093513.	2.5	12
267	III-Nitride Nanostructures for Infrared Optoelectronics. Acta Physica Polonica A, 2006, 110, 295-301.	0.5	4
268	Raman study of strain in GaN/AlN quantum dot multilayered structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2328-2331.	0.8	3
269	Rare-earth doped GaN and InGaN quantum dots grown by plasma assisted MBE. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2373-2376.	0.8	6
270	Phase transition by Mg doping of N-face polarity GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2216-2219.	0.8	2

#	Article	IF	CITATIONS
271	GaN-based quantum dot infrared photodetector operating at 1.38â€[micro sign]m. Electronics Letters, 2005, 41, 1077.	1.0	39
272	Raman Study of Strain Relaxation in GaN/AlN Quantum Dots. AIP Conference Proceedings, 2005, , .	0.4	0
273	Optical and morphological properties ofGaNquantum dots doped withTm. Physical Review B, 2005, 71, .	3.2	25
274	Influence of thermal oxidation on the electronic properties of Pt Schottky contacts on GaN grown by molecular-beam epitaxy. Applied Physics Letters, 2005, 86, 083507.	3.3	13
275	Intraband absorption of doped GaNâ^•AlN quantum dots at telecommunication wavelengths. Applied Physics Letters, 2005, 87, 101912.	3.3	39
276	Strain distribution in GaNâ^•AlN quantum-dot superlattices. Applied Physics Letters, 2005, 87, 203112.	3.3	70
277	Eu locations in Eu-doped InGaNâ^•GaN quantum dots. Applied Physics Letters, 2005, 87, 021906.	3.3	19
278	Polytype transition of N-face GaN:Mg from wurtzite to zinc-blende. Journal of Applied Physics, 2004, 96, 3709-3715.	2.5	18
279	Plastic strain relaxation of nitride heterostructures. Journal of Applied Physics, 2004, 95, 1127-1133.	2.5	66
280	Surfactant effect of gallium during the growth of GaN on AlN(0001Â⁻) by plasma-assisted molecular beam epitaxy. Applied Physics Letters, 2004, 85, 1421-1423.	3.3	24
281	GaN quantum dots doped with Eu. Applied Physics Letters, 2004, 84, 206-208.	3.3	51
282	Photoluminescence of GaN/AlN Quantum Dots Grown on SiC Substrates. Materials Science Forum, 2004, 457-460, 1593-1596.	0.3	0
283	Growth of GaN/AlN Quantum Dots on SiC (000-1) by Plasma-Assisted MBE. Materials Science Forum, 2004, 457-460, 1557-1560.	0.3	0
284	Direct Growth of High Quality GaN by Plasma Assisted Molecular Beam Epitaxy on 4H-SiC Substrates. Materials Science Forum, 2004, 457-460, 1577-1580.	0.3	2
285	Growth of N-Face Polarity III-Nitride Heterostructures on C-Face 4H-SiC by Plasma-Assisted MBE. Materials Science Forum, 2004, 457-460, 1573-1576.	0.3	0
286	Temporal dependence of gallium nitride quantum dot cathodoluminescence under weak electron beam excitation. Journal of Physics Condensed Matter, 2004, 16, S243-S249.	1.8	5
287	Structural and optical properties of rare-earth doped quantum dots grown by plasma-assisted MBE. Physica Status Solidi (B): Basic Research, 2004, 241, 2787-2790.	1.5	3
288	Recent progress in growth and physics of GaN/AlN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 1445-1450.	0.8	12

#	Article	IF	CITATIONS
289	Intersubband absorptions in doped and undoped GaN/AlN quantum wells at telecommunication wavelengths. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 1451-1455.	0.8	Ο
290	Spectroscopy of the electron states in self-organized GaN/AlN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 1456-1460.	0.8	3
291	Vertical transport in group III-nitride heterostructures and application in AlN/GaN resonant tunneling diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2210-2227.	0.8	49
292	Properties of self-assembled Ga-polar and N-polar GaN/AlN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2504-2507.	0.8	2
293	Behavior of phonons in short period GaN-AlN superlattices. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2706-2710.	0.8	7
294	Optical and structural properties of rare earth doped GaN quantum dots. Superlattices and Microstructures, 2004, 36, 707-712.	3.1	10
295	GaN quantum dots by molecular beam epitaxy. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 540-545.	2.7	9
296	Morphological properties of GaN quantum dots doped with Eu. Applied Physics Letters, 2004, 84, 2247-2249.	3.3	22
297	Influence of AlN overgrowth on structural properties of GaN quantum wells and quantum dots grown by plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 2004, 96, 1104-1110.	2.5	57
298	Growth kinetics of N-face polarity GaN by plasma-assisted molecular-beam epitaxy. Applied Physics Letters, 2004, 84, 3684-3686.	3.3	65
299	Effects of stacking on the structural and optical properties of self-organized GaN/AlN quantum dots. Applied Physics Letters, 2004, 84, 4224-4226.	3.3	30
300	Modification of GaN(0001) growth kinetics by Mg doping. Applied Physics Letters, 2004, 84, 2554-2556.	3.3	38
301	AlGaN/GaN HEMTS: material, processing, and characterization. Journal of Materials Science: Materials in Electronics, 2003, 14, 271-277.	2.2	4
302	Engineering of an insulating buffer and use of AlN interlayers: two optimisations for AlGaN–GaN HEMT-like structures. Physica Status Solidi A, 2003, 195, 93-100.	1.7	64
303	Visible red light emission from Eu-doped GaN quantum dots grown by plasma-assisted MBE. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2695-2698.	0.8	3
304	Comprehensive overview on elastic strain relaxation mechanisms in nitride heterostructures: Stranski–Krastanow versus Frank–Van der Merwe growth mode. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2525-2528.	0.8	3
305	Wide-bandgap semiconductor ultraviolet photodetectors. Semiconductor Science and Technology, 2003, 18, R33-R51.	2.0	1,196
306	Molecular-beam epitaxial growth and characterization of quaternary Ill–nitride compounds. Journal of Applied Physics, 2003, 94, 3121-3127.	2.5	60

#	Article	IF	CITATIONS
307	Influence of AlN Overgrowth on GaN Nanostructures Grown by Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 2003, 798, 412.	0.1	0
308	Intersubband Absorptions in Doped and Undoped GaN/AIN Quantum Wells at Telecommunication Wavelengths Grown on Sapphire and 6H-SiC Substrates. Materials Research Society Symposia Proceedings, 2003, 798, 418.	0.1	0
309	Structural and Optical Properties of GaN Quantum Dots. Materials Research Society Symposia Proceedings, 2003, 798, 34.	0.1	0
310	Surfactant effect of In for AlGaN growth by plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 2003, 93, 1550-1556.	2.5	77
311	Structure of GaN quantum dots grown under "modified Stranski–Krastanow―conditions on AlN. Journal of Applied Physics, 2003, 94, 2254-2261.	2.5	102
312	Intersubband spectroscopy of doped and undoped GaN/AlN quantum wells grown by molecular-beam epitaxy. Applied Physics Letters, 2003, 83, 5196-5198.	3.3	85
313	In incorporation during the growth of quaternary III-nitride compounds by plasma-assisted molecular beam epitaxy. Applied Physics Letters, 2003, 82, 2242-2244.	3.3	31
314	New UV detectors for solar observations. , 2003, 4853, 419.		11
315	Imageur diamant et nitrures pour l'observation UV du soleil. European Physical Journal Special Topics, 2003, 108, 227-231.	0.2	0
316	High-responsivity submicron metal-semiconductor-metal ultraviolet detectors. Applied Physics Letters, 2002, 81, 1902-1904.	3.3	49
317	Assessment of GaN metal–semiconductor–metal photodiodes for high-energy ultraviolet photodetection. Applied Physics Letters, 2002, 80, 3198-3200.	3.3	86
318	Interplay between GaN and AlN sublattices in wurtzite AlxGa1â^'xN alloys revealed by Raman spectroscopy. Journal of Applied Physics, 2002, 92, 223-226.	2.5	6
319	Properties of a hole trap inn-type hexagonal GaN. Journal of Applied Physics, 2002, 91, 2998-3001.	2.5	38
320	Thermal stability of Pt- and Ni-based Schottky contacts on GaN and Al0.31Ga0.69N. Semiconductor Science and Technology, 2002, 17, L47-L54.	2.0	40
321	Growth of Quaternary AlInGaN/GaN Heterostructures by Plasma Assisted MBE. Materials Research Society Symposia Proceedings, 2002, 743, L4.5.1.	0.1	0
322	Submicron technology for III-nitride semiconductors. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2071.	1.6	26
323	In as a Surfactant for the Growth of AlGaN/GaN Heterostructures by Plasma Assisted MBE. Materials Research Society Symposia Proceedings, 2002, 743, L6.1.1.	0.1	0
324	Formation of quantum dots by self-rearrangement of metastable 2D GaN. Materials Research Society Symposia Proceedings, 2002, 743, L8.8.1.	0.1	0

#	Article	IF	CITATIONS
325	Recent progresses of the BOLD investigation towards UV detectors for the ESA Solar Orbiter. Diamond and Related Materials, 2002, 11, 427-432.	3.9	19
326	Assessment of AlGaN Growth by Plasma Assisted MBE Using In as a Surfactant. Physica Status Solidi (B): Basic Research, 2002, 234, 726-729.	1.5	7
327	Controlling the Morphology of GaN Layers Grown on AlN in Ga Self-Surfactant Conditions: from Quantum Wells to Quantum Dots. Physica Status Solidi (B): Basic Research, 2002, 234, 931-934.	1.5	0
328	Novel Approaches for Metal-Semiconductor-Metal GaN UV Photodetectors. Physica Status Solidi A, 2002, 194, 476-479.	1.7	8
329	Brillouin characterization of the acousticwaves phase-velocity in AlxGa1â^'xN epilayers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 168-171.	3.5	5
330	Nanotechnology for SAW devices on AlN epilayers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 154-158.	3.5	34
331	AlGaN ultraviolet photodetectors grown by molecular beam epitaxy on Si(111) substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 159-162.	3.5	39
332	Diamond UV detectors for future solar physics missions. Diamond and Related Materials, 2001, 10, 673-680.	3.9	37
333	III nitrides and UV detection. Journal of Physics Condensed Matter, 2001, 13, 7115-7137.	1.8	229
334	Fast AlGaN metal-semiconductor-metal photodetectors grown on Si(111). Electronics Letters, 2001, 37, 239.	1.0	7
335	Novel Sensor Applications of group-III nitrides. Materials Research Society Symposia Proceedings, 2001, 693, 253.	0.1	2
336	Deep levels in MOCVD n-type hexagonal gallium nitride studied by high resolution deep level transient spectroscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 91-94.	3.5	18
337	Application and Performance of GaN Based UV Detectors. Physica Status Solidi A, 2001, 185, 91-97.	1.7	22
338	Effect of Dielectric Layers on the Performance of AlGaN-Based UV Schottky Photodiodes. Physica Status Solidi A, 2001, 188, 307-310.	1.7	7
339	Reliability of Schottky Contacts on AlGaN. Physica Status Solidi A, 2001, 188, 367-370.	1.7	18
340	Investigation of metal–GaN and metal–AlGaN contacts by XPS depth profiles and by electrical measurements. Journal of Crystal Growth, 2001, 230, 558-563.	1.5	22
341	AlGaN photodetectors grown on Si(111) by molecular beam epitaxy. Journal of Crystal Growth, 2001, 230, 544-548.	1.5	20
342	AlGaN-based UV photodetectors. Journal of Crystal Growth, 2001, 230, 537-543.	1.5	153

#	Article	IF	CITATIONS
343	Visible-blind ultraviolet photodetectors based on ZnMgBeSe Schottky barrier diodes. Applied Physics Letters, 2001, 78, 4190-4192.	3.3	29
344	Modeling of the spectral response of AlxGa1â^'xN p-n junction photodetectors. EPJ Applied Physics, 2000, 11, 29-34.	0.7	4
345	Present Status of III-Nitride Based Photodetectors. Materials Research Society Symposia Proceedings, 2000, 622, 371.	0.1	8
346	(Al,Ga)N Ultraviolet Photodetectors and Applications. Physica Status Solidi A, 2000, 180, 293-300.	1.7	11
347	Wet etching of GaN grown by molecular beam epitaxy on Si(111). Semiconductor Science and Technology, 2000, 15, 996-1000.	2.0	120
348	AlGaN-based structures on sapphire for visible blind Schottky-barrier UV photodetectors: toward high-performance device applications. , 2000, , .		0
349	High detectivity ZnSe-based Schottky barrier photodetectors for blue and near-ultraviolet spectral range. Electronics Letters, 2000, 36, 826.	1.0	21
350	High visible rejection AlGaN photodetectors on Si(111) substrates. Applied Physics Letters, 2000, 76, 2785-2787.	3.3	42
351	Time response analysis of ZnSe-based Schottky barrier photodetectors. Applied Physics Letters, 2000, 77, 2761-2763.	3.3	39
352	Modeling of the spectral response of AlxGa1â^'xN Schottky ultraviolet photodetectors. Journal of Applied Physics, 2000, 87, 8286-8290.	2.5	11
353	Low-noise metal-insulator-semiconductor UV photodiodes based on GaN. Electronics Letters, 2000, 36, 2096.	1.0	19
354	Analysis and modeling of AlxGa1â^'xN-based Schottky barrier photodiodes. Journal of Applied Physics, 2000, 88, 2081-2091.	2.5	97
355	UV-B irradiance at Madrid during 1996, 1997, and 1998. Journal of Geophysical Research, 2000, 105, 4903-4906.	3.3	8
356	AlGaN Photodiodes For Monitoring Solar UV Radiation. Journal of Geophysical Research, 2000, 105, 4865-4871.	3.3	23
357	Low noise AlGaN metal-semiconductor-metal photodiodes. Electronics Letters, 1999, 35, 240.	1.0	12
358	Si-doped AlxGa1-xN photoconductive detectors. Semiconductor Science and Technology, 1999, 14, 685-689.	2.0	40
359	AlGaN-based photodetectors for solar UV applications. , 1999, 3629, 200.		5
360	High UV/visible contrast photodiodes based on epitaxial lateral overgrown GaN layers. Electronics Letters, 1999, 35, 1488.	1.0	22

#	Article	IF	CITATIONS
361	Nanoindentation on AlGaN thin films. Journal of Applied Physics, 1999, 86, 6773-6778.	2.5	65
362	High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN. Applied Physics Letters, 1999, 74, 762-764.	3.3	175
363	High-quality visible-blind AlGaN p-i-n photodiodes. Applied Physics Letters, 1999, 74, 1171-1173.	3.3	145
364	Low pressure MOVPE grown AlGaN for UV photodetector applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 59, 401-406.	3.5	11
365	Visible-blindness in photoconductive and photovoltaic AlGaN ultraviolet detectors. Journal of Electronic Materials, 1999, 28, 240-245.	2.2	46
366	Schottky Barrier Ultraviolet Photodetectors on Epitaxial Lateral Overgrown GaN. Physica Status Solidi A, 1999, 176, 141-145.	1.7	18
367	Effects of Bias on the Responsivity of GaN Metal–Semiconductor–Metal Photodiodes. Physica Status Solidi A, 1999, 176, 157-161.	1.7	26
368	AlGaN metal–semiconductor–metal photodiodes. Applied Physics Letters, 1999, 74, 3401-3403.	3.3	126
369	Metalorganic vapor-phase epitaxy-grown AlGaN materials for visible-blind ultraviolet photodetector applications. Journal of Applied Physics, 1999, 86, 5286-5292.	2.5	92
370	Metal/GaN Contacts Studied by Electron Spectroscopies. Materials Research Society Symposia Proceedings, 1999, 595, 1.	0.1	1
371	The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1). Journal of Crystal Growth, 1998, 183, 23-30.	1.5	303
372	Growth optimization and doping with Si and Be of high quality GaN on Si(111) by molecular beam epitaxy. Journal of Electronic Materials, 1998, 27, 276-281.	2.2	37
373	GaN-based solar-ultraviolet detection instrument. Applied Optics, 1998, 37, 5058.	2.1	33
374	High-performance GaN p-n junction photodetectors for solar ultraviolet applications. Semiconductor Science and Technology, 1998, 13, 1042-1046.	2.0	205
375	Blue-U.V. Homojunction GaN LEDs Fabricated by MOVPE. Materials Science Forum, 1998, 264-268, 1425-1428.	0.3	1
376	AlxGa1â^'xN:Si Schottky barrier photodiodes with fast response and high detectivity. Applied Physics Letters, 1998, 73, 2146-2148.	3.3	73
377	Photoconductive gain modelling of GaN photodetectors. Semiconductor Science and Technology, 1998, 13, 563-568.	2.0	167
378	Analysis of the Visible and UV Electroluminescence in Homojunction GaN LED's. MRS Internet Journal of Nitride Semiconductor Research, 1998, 3, 1.	1.0	30

#	Article	IF	CITATIONS
379	Ultraviolet Photodetectors Based on Al _x Ga _{1-x} N Schottky Barriers. MRS Internet Journal of Nitride Semiconductor Research, 1998, 3, 1.	1.0	17
380	Photoconductor gain mechanisms in GaN ultraviolet detectors. Applied Physics Letters, 1997, 71, 870-872.	3.3	163
381	Growth kinetics and morphology of high quality AlN grown on Si(111) by plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 1997, 82, 4681-4683.	2.5	62
382	Study of high quality AlN layers grown on Si(111) substrates by plasma-assisted molecular beam epitaxy. MRS Internet Journal of Nitride Semiconductor Research, 1997, 2, 1.	1.0	14
383	Characterization and Modeling of Photoconductive GaN Ultraviolet Detectors. MRS Internet Journal of Nitride Semiconductor Research, 1997, 2, 1.	1.0	13
384	Yellow luminescence in Mg-doped GaN. MRS Internet Journal of Nitride Semiconductor Research, 1997, 2, 1.	1.0	9
385	High frequency SAW devices on AlGaN: fabrication, characterization and integration with optoelectronics. , 0, , .		14
386	Extended Crystallographic Defects in Gallium Nitride. Materials Science Forum, 0, 644, 117-122.	0.3	5