
Anbazhagan Panjamani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2300682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probabilistic seismic hazard analysis for Bangalore. Natural Hazards, 2009, 48, 145-166.	1.6	106
2	Seismic Site Classification and Correlation between Standard Penetration Test N Value and Shear Wave Velocity for Lucknow City in Indo-Gangetic Basin. Pure and Applied Geophysics, 2013, 170, 299-318.	0.8	97
3	Seismic Hazard Analysis for the Bangalore Region. Natural Hazards, 2007, 40, 261-278.	1.6	90
4	Ground motion prediction equation considering combined dataset of recorded and simulated ground motions. Soil Dynamics and Earthquake Engineering, 2013, 53, 92-108.	1.9	88
5	Estimation of peak ground acceleration and spectral acceleration for South India with local site effects: probabilistic approach. Natural Hazards and Earth System Sciences, 2009, 9, 865-878.	1.5	83
6	Spatial Variability of the Depth of Weathered and Engineering Bedrock using Multichannel Analysis of Surface Wave Method. Pure and Applied Geophysics, 2009, 166, 409-428.	0.8	60
7	Seismic microzonation of Bangalore, India. Journal of Earth System Science, 2008, 117, 833-852.	0.6	58
8	Mapping of Average Shear Wave Velocity for Bangalore Region: A Case Study. Journal of Environmental and Engineering Geophysics, 2008, 13, 69-84.	1.0	58
9	Review of correlations between SPT N and shear modulus: A new correlation applicable to any region. Soil Dynamics and Earthquake Engineering, 2012, 36, 52-69.	1.9	56
10	Multi-criteria seismic hazard evaluation for Bangalore city, India. Journal of Asian Earth Sciences, 2010, 38, 186-198.	1.0	51
11	Correlation of densities with shear wave velocities and SPT <i>N</i> values. Journal of Geophysics and Engineering, 2016, 13, 320-341.	0.7	49
12	Seismic hazard analysis of Lucknow considering local and active seismic gaps. Natural Hazards, 2013, 69, 327-350.	1.6	47
13	Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters. Natural Hazards, 2015, 78, 1163-1195.	1.6	43
14	Influence of Rock Depth on Seismic Site Classification for Shallow Bedrock Regions. Natural Hazards Review, 2013, 14, 108-121.	0.8	42
15	Influence of size of granulated rubber and tyre chips on the shear strength characteristics of sand–rubber mix. Geomechanics and Geoengineering, 2017, 12, 266-278.	0.9	40
16	Seismic site classification and correlation between VS and SPT-N for deep soil sites in Indo-Gangetic Basin. Journal of Applied Geophysics, 2019, 163, 55-72.	0.9	39
17	Model track studies on fouled ballast using ground penetrating radar and multichannel analysis of surface wave. Journal of Applied Geophysics, 2011, 74, 175-184.	0.9	38
18	Use of remote sensing and seismotectonic parameters for seismic hazard analysis of Bangalore. Natural Hazards and Earth System Sciences, 2006, 6, 927-939.	1.5	36

#	Article	IF	CITATIONS
19	Site classification and estimation of surface level seismic hazard using geophysical data and probabilistic approach. Journal of Applied Geophysics, 2009, 68, 219-230.	0.9	33
20	Maximum magnitude estimation considering the regional rupture character. Journal of Seismology, 2015, 19, 695-719.	0.6	31
21	Spatial Variability of Rock Depth in Bangalore Using Geostatistical, Neural Network and Support Vector Machine Models. Geotechnical and Geological Engineering, 2008, 26, 503-517.	0.8	29
22	Classification of road damage due to earthquakes. Natural Hazards, 2012, 60, 425-460.	1.6	29
23	Study of Ballast Fouling in Railway Track Formations. Indian Geotechnical Journal, 2012, 42, 87-99.	0.7	27
24	Determination of seismic site classification of seismic recording stations in the Himalayan region using HVSR method. Soil Dynamics and Earthquake Engineering, 2019, 116, 304-316.	1.9	25
25	Comparison of soil water content estimation equations using ground penetrating radar. Journal of Hydrology, 2020, 588, 125039.	2.3	25
26	Identification of type and degree of railway ballast fouling using ground coupled GPR antennas. Journal of Applied Geophysics, 2016, 126, 183-190.	0.9	24
27	Selection of Ground Motion Prediction Equations for Seismic Hazard Analysis of Peninsular India. Journal of Earthquake Engineering, 2016, 20, 699-737.	1.4	24
28	Regional stochastic GMPE with available recorded data for active region – Application to the Himalayan region. Soil Dynamics and Earthquake Engineering, 2019, 126, 105825.	1.9	24
29	Using a seismic survey to measure the shear modulus of clean and fouled ballast. Geomechanics and Geoengineering, 2010, 5, 117-126.	0.9	23
30	Estimation of design basis earthquake using region-specific Mmax, for the NPP site at Kalpakkam, Tamil Nadu, India. Nuclear Engineering and Design, 2013, 259, 41-64.	0.8	22
31	Relationship between Intensity and Recorded Groundâ€Motion and Spectral Parameters for the Himalayan Region. Bulletin of the Seismological Society of America, 2016, 106, 1672-1689.	1.1	22
32	Comprehensive amplification estimation of the Indo Gangetic Basin deep soil sites in the seismically active area. Soil Dynamics and Earthquake Engineering, 2019, 127, 105855.	1.9	20
33	Probabilistic seismic hazard analysis using the logic tree approach – Patna district (India). Natural Hazards and Earth System Sciences, 2019, 19, 2097-2115.	1.5	20
34	Identification of Shear Modulus Reduction and Damping Curve for Deep and Shallow Sites: Kik-Net Data. Journal of Earthquake Engineering, 2021, 25, 2668-2696.	1.4	19
35	Shear strength characteristics of geosynthetic reinforced rubber-sand mixtures. Geotextiles and Geomembranes, 2021, 49, 910-920.	2.3	19
36	Probabilistic evaluation of seismic soil liquefaction potential based on SPT data. Natural Hazards, 2010, 53, 547-560.	1.6	18

#	Article	IF	CITATIONS
37	2D nonlinear site response analysis of typical stiff and soft soil sites at shallow bedrock region with low to medium seismicity. Journal of Applied Geophysics, 2020, 179, 104087.	0.9	18
38	Energy Absorption Capacity and Shear Strength Characteristics of Waste Tire Crumbs and Sand Mixtures. International Journal of Geotechnical Earthquake Engineering, 2015, 6, 28-49.	0.3	17
39	Empirical models for the prediction of ground motion duration for intraplate earthquakes. Journal of Seismology, 2017, 21, 1001-1021.	0.6	17
40	Region-specific deterministic and probabilistic seismic hazard analysis of Kanpur city. Journal of Earth System Science, 2017, 126, 1.	0.6	16
41	Selection of representative shear modulus reduction and damping curves for rock, gravel and sand sites from the KiK-Net downhole array. Natural Hazards, 2017, 88, 1741-1768.	1.6	16
42	Reconnaissance report on geotechnical effects and structural damage caused by the 3 January 2017 Tripura earthquake, India. Natural Hazards, 2019, 98, 425-450.	1.6	16
43	Amplification based on shear wave velocity for seismic zonation: comparison of empirical relations and site response results for shallow engineering bedrock sites. Geomechanics and Engineering, 2011, 3, 189-206.	0.9	16
44	Seismic characterization and dynamic site response of a municipal solid waste landfill in Bangalore, India. Waste Management and Research, 2016, 34, 205-213.	2.2	15
45	Liquefaction Hazard Mapping of Lucknow. International Journal of Geotechnical Earthquake Engineering, 2013, 4, 17-41.	0.3	14
46	A checking method for probabilistic seismic-hazard assessment: case studies on three cities. Natural Hazards, 2011, 58, 67-84.	1.6	12
47	Site Specific Ground Response Study of Deep Indo-Gangetic Basin Using Representative Regional Ground Motions. , 2012, , .		12
48	Seismic hazard map of Coimbatore using subsurface fault rupture. Natural Hazards, 2012, 60, 1325-1345.	1.6	12
49	Representative seismic hazard map of Coimbatore, India. Engineering Geology, 2014, 171, 81-95.	2.9	12
50	Determination of GMPE functional form for an active region with limited strong motion data: application to the Himalayan region. Journal of Seismology, 2018, 22, 161-185.	0.6	11
51	Subsurface profiling using integrated geophysical methods for 2D site response analysis in Bangalore city, India: a new approach. Journal of Geophysics and Engineering, 2017, 14, 1300-1314.	0.7	10
52	Low cost damping scheme for low to medium rise buildings using rubber soil mixtures. Japanese Geotechnical Society Special Publication, 2015, 3, 24-28.	0.2	9
53	Identification of Karstic Features in Lateritic Soil by an Integrated Geophysical Approach. Pure and Applied Geophysics, 2018, 175, 4515-4536.	0.8	9
54	Region specific seismic hazard analysis of Krishna Raja Sagara Dam, India. Engineering Geology, 2020, 268, 105512.	2.9	9

#	Article	IF	CITATIONS
55	Relationship between Low Strain Shear Modulus and Standard Penetration Test <i>N</i> Values. Geotechnical Testing Journal, 2010, 33, 150-164.	0.5	9
56	Establishing Empirical Correlation between Sediment Thickness and Resonant Frequency using HVSR for the Indo-Gangetic Plain. Current Science, 2019, 117, 1482.	0.4	9
57	Quantitative Assessment of Shear Wave Velocity Correlations in the Shallow Bedrock Sites. Indian Geotechnical Journal, 2016, 46, 381-397.	0.7	8
58	Regional stochastic ground-motion model for low to moderate seismicity area with variable seismotectonic: application to Peninsular India. Bulletin of Earthquake Engineering, 2019, 17, 3661-3680.	2.3	8
59	Site Amplification Factors and Acceleration Response Spectra for Shallow Bedrock Sites – Application to Southern India. Journal of Earthquake Engineering, 2022, 26, 2103-2123.	1.4	8
60	Status quo of Standard Penetration Test in India: A Review of Field Practices and Suggestions to Incorporate in IS 2131. Indian Geotechnical Journal, 2021, 51, 421-434.	0.7	8
61	Shear modulus from SPT N-values with different energy values. Soil Dynamics and Earthquake Engineering, 2021, 150, 106925.	1.9	8
62	Characterization of Clean and Fouled Rail Track Ballast Subsurface Using Seismic Surface Survey Method: Model and Field Studies. Journal of Testing and Evaluation, 2011, 39, 831-841.	0.4	8
63	Seismic magnitude conversion and its effect on seismic hazard analysis. Journal of Seismology, 2019, 23, 623-647.	0.6	7
64	Influence of physico-chemical components on the consolidation behavior of soft kaolinites. Acta Geotechnica, 2017, 12, 441-451.	2.9	6
65	Prediction of different depth amplifications of deep soil sites for potential scenario earthquakes. Natural Hazards, 2021, 107, 1935-1963.	1.6	6
66	Liquefaction Resistance and Cyclic Response of Air Injected-Desaturated Sandy Soil. Geotechnical and Geological Engineering, 2022, 40, 1851-1872.	0.8	6
67	Effective Use of SPT: Hammer Energy Measurement and Integrated Subsurface Investigation. Indian Geotechnical Journal, 2022, 52, 1079-1096.	0.7	6
68	Soil void ratio correlation with shear wave velocities and SPT N values for Indo-Gangetic basin. Journal of the Geological Society of India, 2017, 89, 398-406.	0.5	5
69	Region-Specific Correlations Between \$\$varvec{V}_{{{mathbf{S}}30}}\$ and Time-Averaged \$\$V_{ext{S}}\$\$ and SPT-N Values at Different Depths for the Indo-Gangetic Basin. Indian Geotechnical Journal, 2020, 50, 454-472.	0.7	5
70	Pseudo-Spectral Damping Reduction Factors for the Himalayan Region Considering Recorded Ground-Motion Data. PLoS ONE, 2016, 11, e0161137.	1.1	5
71	Seismic Site Classifications and Site Amplifications for the Urban Centres in the Shallow Overburden Deposits. International Journal of Geotechnical Earthquake Engineering, 2012, 3, 86-108.	0.3	5
72	Seismic intensity map of South India for estimated future earthquakes. Arabian Journal of Geosciences, 2015, 8, 9365-9371.	0.6	4

#	Article	IF	CITATIONS
73	Small- to Large-Strain Shear Modulus and Damping Ratio of Sand-Tyre Crumb Mixtures. , 2016, , .		4
74	Appraisal of groundwater resource in Holocene soil deposits by resistivity, hydrochemical and granulomerial studies in the Gulf of Mannar Coast from Southern India. Environmental Earth Sciences, 2016, 75, 1.	1.3	4
75	Seismic site classification and amplification of shallow bedrock sites. PLoS ONE, 2018, 13, e0208226.	1.1	4
76	Site Response Study and Amplification Factor for Shallow Bedrock Sites. Indian Geotechnical Journal, 2020, 50, 726-738.	0.7	4
77	Detailed Seismic Hazard, Disaggregation and Sensitivity Analysis for the Indo-Gangetic Basin. Pure and Applied Geophysics, 2021, 178, 1977-1999.	0.8	4
78	Effects of Hammer Energy on Borehole Termination and SBC Calculation Through Site-Specific Hammer Energy Measurement Using SPT HEMA. Indian Geotechnical Journal, 2022, 52, 381.	0.7	4
79	Integrated Subsurface Investigation of the Misaligned Reinforced Soil Retaining Wall. Indian Geotechnical Journal, 2015, 45, 332-340.	0.7	3
80	Seismic Site Classification Using Boreholes and Shear Wave Velocity: Assessing the Suitable Method for Shallow Engineering Rock Region. , 2010, , .		2
81	Investigation of Soil Compaction Homogeneity in a Finished Building Using Ground Penetrating Radar. , 2012, , .		2
82	Subsurface Investigation—Integrated and Modern Approach. Developments in Geotechnical Engineering, 2018, , 245-257.	0.6	2
83	2D nonlinear site response analysis of shallow bedrock sites using integrated subsurface profiles. Annals of Geophysics, 2020, 63, .	0.5	2
84	Failure Modes of Air Desaturated Sand in Undrained Cyclic Loading: A Systematic Experimental Investigation. Indian Geotechnical Journal, 2022, 52, 249.	0.7	2
85	Forensic investigation of earthquake induced failures during Sikkim 2011 earthquake, India. Japanese Geotechnical Society Special Publication, 2016, 2, 201-206.	0.2	1
86	Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters. , 2015, 78, 1163.		1
87	Site response analysis of liquefiable soil employing continuous wavelet transform. Geotechnique Letters, 2022, 12, 1-33.	0.6	1
88	Characterization of Rail Track Subsurface Using Seismic Refraction Survey. , 2011, , .		0
89	Prediction of Future Surface PGA in the States of Indo-Gangetic Basin Considering Site Specific Studies. Lecture Notes in Civil Engineering, 2021, , 51-66.	0.3	0
90	Liquefaction Resistance of Desaturated and Partly Saturated Clean Sand. Lecture Notes in Civil Engineering, 2021, , 171-180.	0.3	0

#	Article	IF	CITATIONS
91	Elastic Seismic Design Response Spectra for Deep and Shallow Basin of the Indian Subcontinent. Lecture Notes in Civil Engineering, 2021, , 129-136.	0.3	0
92	Dynamic Properties of Municipal Solid Waste and Amplification of Landfill Site. Developments in Geotechnical Engineering, 2017, , 39-46.	0.6	0
93	Effective input velocity and depth for deep and shallow sites for site response analysis. Geomechanics and Geoengineering, 2023, 18, 193-207.	0.9	0