Katarzyna Majzner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2300376/publications.pdf

Version: 2024-02-01

567144 501076 2,863 31 15 28 citations h-index g-index papers 31 31 31 4588 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Raman and fluorescence imaging of phospholipidosis induced by cationic amphiphilic drugs in endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119186.	1.9	4
2	Menadione-induced endothelial inflammation detected by Raman spectroscopy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118911.	1.9	10
3	Chloroquine-Induced Accumulation of Autophagosomes and Lipids in the Endothelium. International Journal of Molecular Sciences, 2021, 22, 2401.	1.8	12
4	Towards Raman-Based Screening of Acute Lymphoblastic Leukemia-Type B (B-ALL) Subtypes. Cancers, 2021, 13, 5483.	1.7	9
5	Estimation of the content of lipids composing endothelial lipid droplets based on Raman imaging. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158758.	1.2	10
6	Vibrational imaging of proteins: changes in the tissues and cells in the lifestyle disease studies. , 2020, , 177-218.		1
7	"lslets therapeutic checkpoint: Inhibition of stearoyl oA desaturase impairs lipid droplet morphology and metabolism during palmitotoxicity of pancreatic βâ€eells― FASEB Journal, 2020, 34, 1-1.	0.2	0
8	Tunicamycin induced endoplasmic reticulum changes in endothelial cells investigated <i>in vitro</i> by confocal Raman imaging. Analyst, The, 2019, 144, 6561-6569.	1.7	11
9	Apatite from NWA 10153 and NWA 10645—The Key to Deciphering Magmatic and Fluid Evolution History in Nakhlites. Minerals (Basel, Switzerland), 2019, 9, 695.	0.8	7
			the state of the s
10	Raman Imaging of Biomedical Samples. Springer Series in Surface Sciences, 2018, , 307-346.	0.3	3
10	Raman Imaging of Biomedical Samples. Springer Series in Surface Sciences, 2018, , 307-346. Uptake of fatty acids by a single endothelial cell investigated by Raman spectroscopy supported by AFM. Analyst, The, 2018, 143, 970-980.	0.3	3
	Uptake of fatty acids by a single endothelial cell investigated by Raman spectroscopy supported by AFM.		
11	Uptake of fatty acids by a single endothelial cell investigated by Raman spectroscopy supported by AFM. Analyst, The, 2018, 143, 970-980. FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic	1.7	28
11 12	Uptake of fatty acids by a single endothelial cell investigated by Raman spectroscopy supported by AFM. Analyst, The, 2018, 143, 970-980. FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria. Analytical Chemistry, 2018, 90, 8896-8904. Diversity among endothelial cell lines revealed by Raman and Fourier-transform infrared	3.2	28 78
11 12 13	Uptake of fatty acids by a single endothelial cell investigated by Raman spectroscopy supported by AFM. Analyst, The, 2018, 143, 970-980. FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria. Analytical Chemistry, 2018, 90, 8896-8904. Diversity among endothelial cell lines revealed by Raman and Fourier-transform infrared spectroscopic imaging. Analyst, The, 2018, 143, 4323-4334. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta - Part A: Molecular	1.7 3.2 1.7	28 78 5
11 12 13	Uptake of fatty acids by a single endothelial cell investigated by Raman spectroscopy supported by AFM. Analyst, The, 2018, 143, 970-980. FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria. Analytical Chemistry, 2018, 90, 8896-8904. Diversity among endothelial cell lines revealed by Raman and Fourier-transform infrared spectroscopic imaging. Analyst, The, 2018, 143, 4323-4334. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 185, 317-335.	1.7 3.2 1.7 2.0	28 78 5 654
11 12 13 14	Uptake of fatty acids by a single endothelial cell investigated by Raman spectroscopy supported by AFM. Analyst, The, 2018, 143, 970-980. FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria. Analytical Chemistry, 2018, 90, 8896-8904. Diversity among endothelial cell lines revealed by Raman and Fourier-transform infrared spectroscopic imaging. Analyst, The, 2018, 143, 4323-4334. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 185, 317-335. Different route of hydroxide incorporation and thermal stability of new type of water clathrate: X-ray single crystal and Raman investigation. Scientific Reports, 2017, 7, 9046. Lipid droplets formation in human endothelial cells in response to polyunsaturated fatty acids and 1â€methylâ€nicotinamide (MNA); confocal Raman imaging and fluorescence microscopy studies. Journal of	1.7 3.2 1.7 2.0	28 78 5 654

#	Article	IF	CITATIONS
19	Raman microscopy as a novel tool to detect endothelial dysfunction. Pharmacological Reports, 2015, 67, 736-743.	1.5	21
20	Raman spectroscopy of lipids: a review. Journal of Raman Spectroscopy, 2015, 46, 4-20.	1.2	703
21	Nuclear accumulation of anthracyclines in the endothelium studied by bimodal imaging: fluorescence and Raman microscopy. Analyst, The, 2015, 140, 2302-2310.	1.7	28
22	Cell viability assessment using the Alamar blue assay: A comparison of 2D and 3D cell culture models. Toxicology in Vitro, 2015, 29, 124-131.	1.1	182
23	Protomylonite evolution potentially revealed by the 3D depiction and fractal analysis of chemical data from a feldspar. Contributions To Mineralogy and Petrology, 2014, 167, 1.	1.2	2
24	Raman Imaging Providing Insights into Chemical Composition of Lipid Droplets of Different Size and Origin: In Hepatocytes and Endothelium. Analytical Chemistry, 2014, 86, 6666-6674.	3.2	69
25	General Overview on Vibrational Spectroscopy Applied in Biology and Medicine. Challenges and Advances in Computational Chemistry and Physics, 2014, , 3-14.	0.6	5
26	Raman spectroscopy of proteins: a review. Journal of Raman Spectroscopy, 2013, 44, 1061-1076.	1.2	783
27	Secondary structure of proteins analyzed ex vivo in vascular wall in diabetic animals using FT-IR spectroscopy. Analyst, The, 2013, 138, 7400.	1.7	15
28	3D confocal Raman imaging of endothelial cells and vascular wall: perspectives in analytical spectroscopy of biomedical research. Analyst, The, 2013, 138, 603-610.	1.7	63
29	Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell. Analyst, The, 2012, 137, 4135.	1.7	32
30	Protein profile in vascular wall of atherosclerotic mice analyzed ex vivo using FT-IR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 96, 940-945.	2.0	15
31	Geochemistry and growth morphology of alkali feldspar crystals from an IAB iron meteorite – insight into possible hypotheses of their crystallization. Annales Societatis Geologorum Poloniae, 0, , .	0.1	O