Srinivasrao Ganipisetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2300375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system. Nature Communications, 2022, 13, 904.	12.8	92
2	The N-Degron Pathway Mediates ER-phagy. Molecular Cell, 2019, 75, 1058-1072.e9.	9.7	96
3	Mechanism of the natural product moracin-O derived MO-460 and its targeting protein hnRNPA2B1 on HIF-1α inhibition. Experimental and Molecular Medicine, 2019, 51, 1-14.	7.7	22
4	Regulation of autophagic proteolysis by the N-recognin SQSTM1/p62 of the N-end rule pathway. Autophagy, 2018, 14, 359-361.	9.1	36
5	The Novel Small Molecule STK899704 Promotes Senescence of the Human A549 NSCLC Cells by Inducing DNA Damage Responses and Cell Cycle Arrest. Frontiers in Pharmacology, 2018, 9, 163.	3.5	13
6	The N-recognin UBR4 of the N-end rule pathway is targeted to and required for the biogenesis of the early endosome. Journal of Cell Science, 2018, 131, .	2.0	9
7	p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nature Communications, 2017, 8, 102.	12.8	178
8	Ginsenoside Re Promotes Osteoblast Differentiation in Mouse Osteoblast Precursor MC3T3-E1 Cells and a Zebrafish Model. Molecules, 2017, 22, 42.	3.8	21
9	Anticancer activity of a novel small molecule tubulin inhibitor STK899704. PLoS ONE, 2017, 12, e0173311.	2.5	32
10	Design and Synthesis of a Cell-Permeable, Drug-Like Small Molecule Inhibitor Targeting the Polo-Box Domain of Polo-Like Kinase 1. PLoS ONE, 2014, 9, e107432.	2.5	23
11	Discovery of novel histidine-derived lipo-amino acids: Applied in the synthesis of ultra-short antimicrobial peptidomimetics having potent antimicrobial activity, salt resistance and protease stability. European Journal of Medicinal Chemistry, 2013, 68, 10-18.	5.5	26
12	Total synthesis of the acetyl derivatives of lyxo-(2R,3R,4R)-phytosphingosine and (â^')-jaspine B. Tetrahedron: Asymmetry, 2012, 23, 564-569.	1.8	13
13	A common and stereoselective strategy for the synthesis of N,O,O,O-tetra-acetyl d-ribo-(2S,3S,4R)-phytosphingosine and 2-epi-jaspine B. Tetrahedron Letters, 2011, 52, 4861-4864.	1.4	14
14	A common strategy for the stereoselective synthesis of anhydrophytosphingosine pachastrissamine (jaspine B) and N,O,O,O-tetra-acetyl d-lyxo-phytosphingosine. Tetrahedron Letters, 2011, 52, 6076-6079.	1.4	16
15	The formal synthesis of 3-epi jaspine B using stereoselective intramolecular oxa-Michael addition. Tetrahedron: Asymmetry, 2010, 21, 1963-1970.	1.8	22
16	The formal synthesis of isofebrifugine using stereoselective intramolecular Michael addition. Tetrahedron: Asymmetry, 2008, 19, 2153-2158.	1.8	19