Sayed-Amir Marashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2299343/publications.pdf

Version: 2024-02-01

82	982	17 h-index	24
papers	citations		g-index
89	89	89	1261
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Conformational Study of Human Serum Albumin in Pre-denaturation Temperatures by Differential Scanning Calorimetry, Circular Dichroism and UV Spectroscopy. BMB Reports, 2006, 39, 530-536.	1.1	67
2	Impact of residue accessible surface area on the prediction of protein secondary structures. BMC Bioinformatics, 2008, 9, 357.	1.2	38
3	A metabolic network-based approach for developing feeding strategies for CHO cells to increase monoclonal antibody production. Bioprocess and Biosystems Engineering, 2020, 43, 1381-1389.	1.7	36
4	A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia. Systems Biology in Reproductive Medicine, 2017, 63, 100-112.	1.0	32
5	Correlations between genomic GC levels and optimal growth temperatures are not â€~robust'. Biochemical and Biophysical Research Communications, 2004, 325, 381-383.	1.0	31
6	Biomedical applications of cell- and tissue-specific metabolic network models. Journal of Biomedical Informatics, 2017, 68, 35-49.	2.5	29
7	\hat{l}^2 -Sheet capping: Signals that initiate and terminate \hat{l}^2 -sheet formation. Journal of Structural Biology, 2008, 161, 101-110.	1.3	28
8	Analysis of Metabolic Subnetworks by Flux Cone Projection. Algorithms for Molecular Biology, 2012, 7, 17.	0.3	28
9	Rps27a might act as a controller of microglia activation in triggering neurodegenerative diseases. PLoS ONE, 2020, 15, e0239219.	1.1	27
10	Binding of Tris to Bacillus licheniformis & Samp;#945;-Amylase Can Affect Its Starch Hydrolysis Activity. Protein and Peptide Letters, 2008, 15, 212-214.	0.4	26
11	FFCA: a feasibility-based method for flux coupling analysis of metabolic networks. BMC Bioinformatics, 2011, 12, 236.	1.2	24
12	Nanotechnology helps medicine: Nanoscale swimmers and their future applications. Medical Hypotheses, 2005, 65, 198-199.	0.8	22
13	Flux coupling analysis of metabolic networks is sensitive to missing reactions. BioSystems, 2011, 103, 57-66.	0.9	22
14	A meta-analysis of gene expression data highlights synaptic dysfunction in the hippocampus of brains with Alzheimer's disease. Scientific Reports, 2020, 10, 8384.	1.6	22
15	Manually curated genome-scale reconstruction of the metabolic network of Bacillus megaterium DSM319. Scientific Reports, 2019, 9, 18762.	1.6	21
16	Reconstruction of a generic metabolic network model of cancer cells. Molecular BioSystems, 2014, 10, 3014-3021.	2.9	20
17	A Systems-Based Approach for Cyanide Overproduction by Bacillus megaterium for Gold Bioleaching Enhancement. Frontiers in Bioengineering and Biotechnology, 2020, 8, 528.	2.0	19
18	Importance of RNA secondary structure information for yeast donor and acceptor splice site predictions by neural networks. Computational Biology and Chemistry, 2006, 30, 50-57.	1.1	18

#	Article	IF	Citations
19	Impact of RNA structure on the prediction of donor and acceptor splice sites. BMC Bioinformatics, 2006, 7, 297.	1.2	18
20	A tale of two symmetrical tails: Structural and functional characteristics of palindromes in proteins. BMC Bioinformatics, 2008, 9, 274.	1.2	18
21	Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism. Biotechnology Letters, 2013, 35, 2039-2044.	1.1	18
22	Reconstruction and validation of a constraintâ€based metabolic network model for bone marrowâ€derived mesenchymal stem cells. Cell Proliferation, 2015, 48, 475-485.	2.4	17
23	Acetic acid uptake rate controls H2 production in Chlamydomonas-bacteria co-cultures. Algal Research, 2019, 42, 101605.	2.4	17
24	A multiscale agent-based framework integrated with a constraint-based metabolic network model of cancer for simulating avascular tumor growth. Molecular BioSystems, 2017, 13, 1888-1897.	2.9	16
25	Evolutionarily conserved motifs and modules in mitochondrial protein–protein interaction networks. Mitochondrion, 2013, 13, 668-675.	1.6	15
26	Modeling the Differences in Biochemical Capabilities of Pseudomonas Species by Flux Balance Analysis: How Good Are Genome-Scale Metabolic Networks at Predicting the Differences?. Scientific World Journal, The, 2014, 2014, 1-11.	0.8	15
27	A kidney-specific genome-scale metabolic network model for analyzing focal segmental glomerulosclerosis. Mammalian Genome, 2016, 27, 158-167.	1.0	15
28	A reconciliation of genome-scale metabolic network model of Zymomonas mobilis ZM4. Scientific Reports, 2020, 10, 7782.	1.6	15
29	PCD-GED: Protein complex detection considering PPI dynamics based on time series gene expression data. Journal of Theoretical Biology, 2015, 378, 31-38.	0.8	14
30	Genome-scale reconstruction of the metabolic network in Pseudomonas stutzeri A1501. Molecular BioSystems, 2015, 11, 3022-3032.	2.9	13
31	Cancer driver gene discovery in transcriptional regulatory networks using influence maximization approach. Computers in Biology and Medicine, 2019, 114, 103362.	3.9	13
32	Three-way interaction model to trace the mechanisms involved in Alzheimer's disease transgenic mice. PLoS ONE, 2017, 12, e0184697.	1.1	13
33	Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses. PLoS ONE, 2020, 15, e0240330.	1.1	13
34	On flux coupling analysis of metabolic subsystems. Journal of Theoretical Biology, 2012, 302, 62-69.	0.8	12
35	Exploring biological processes involved in embryonic stem cell differentiation by analyzing proteomic data. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1063-1069.	1.1	12
36	NDDSA: A network- and domain-based method for predicting drug-side effect associations. Information Processing and Management, 2020, 57, 102357.	5.4	12

#	Article	IF	CITATIONS
37	A mathematical approach to emergent properties of metabolic networks: Partial coupling relations, hyperarcs and flux ratios. Journal of Theoretical Biology, 2014, 355, 185-193.	0.8	11
38	Discovering missing reactions of metabolic networks by using gene co-expression data. Scientific Reports, 2017, 7, 41774.	1.6	11
39	How reliable re-adjustment is: correspondence regarding A. Fuglsang, "The â€~effective number of codons' revisited― Biochemical and Biophysical Research Communications, 2004, 324, 1-2.	1.0	10
40	On the identity of "citers― Are papers promptly recognized by other investigators?. Medical Hypotheses, 2005, 65, 822.	0.8	10
41	CAMWI: Detecting protein complexes using weighted clustering coefficient and weighted density. Computational Biology and Chemistry, 2015, 58, 231-240.	1.1	10
42	Systematically gap-filling the genome-scale metabolic model of CHO cells. Biotechnology Letters, 2021, 43, 73-87.	1.1	10
43	On the mechanism of apoptosis-inducing activity of human calprotectin: Zinc sequestration, induction of a signaling pathway, or something else?. Medical Hypotheses, 2007, 68, 1012-1015.	0.8	9
44	Adaptation of proteins to different environments: A comparison of proteome structural properties in Bacillus subtilis and Escherichia coli. Journal of Theoretical Biology, 2007, 244, 127-132.	0.8	9
45	Applications of a metabolic network model of mesenchymal stem cells for controlling cell proliferation and differentiation. Cytotechnology, 2018, 70, 331-338.	0.7	9
46	Modeling directed ligand passage toward enzyme active site by a †double cellular automata†model. Biochemical and Biophysical Research Communications, 2005, 333, 1-4.	1.0	8
47	A graph-based approach to analyze flux-balanced pathways in metabolic networks. BioSystems, 2018, 165, 40-51.	0.9	8
48	<i>In silico</i> prediction of enzymatic reactions catalyzed by acid phosphatases. Journal of Biomolecular Structure and Dynamics, 2021, 39, 3900-3911.	2.0	8
49	A genome-scale metabolic network reconstruction of extremely halophilic bacterium Salinibacter ruber. PLoS ONE, 2019, 14, e0216336.	1.1	7
50	Why major nonenzymatic glycation sites of human serum albumin are preferred to other residues?. Medical Hypotheses, 2005, 64, 881.	0.8	6
51	Hierarchical organization of fluxes in Escherichia coli metabolic network: Using flux coupling analysis for understanding the physiological properties of metabolic genes. Gene, 2015, 561, 199-208.	1.0	6
52	The metabolic network model of primed/naive human embryonic stem cells underlines the importance of oxidation-reduction potential and tryptophan metabolism in primed pluripotency. Cell and Bioscience, 2019, 9, 71.	2.1	6
53	Beyond Taxonomic Analysis of Microbiomes: A Functional Approach for Revisiting Microbiome Changes in Colorectal Cancer. Frontiers in Microbiology, 2019, 10, 3117.	1.5	6
54	EIA-CNDP: An exact iterative algorithm for critical node detection problem. Computers and Operations Research, 2021, 127, 105138.	2.4	6

#	Article	IF	CITATIONS
55	In silico prediction of specific pathways that regulate mesangial cell proliferation in IgA nephropathy. Medical Hypotheses, 2016, 97, 38-45.	0.8	5
56	Three-way interaction model with switching mechanism as an effective strategy for tracing functionally-related genes. Expert Review of Proteomics, 2019, 16, 161-169.	1.3	5
57	Impact of Wikipedia on citation trends. EXCLI Journal, 2013, 12, 15-9.	0.5	5
58	CAMAMED: a pipeline for composition-aware mapping-based analysis of metagenomic data. NAR Genomics and Bioinformatics, 2021, 3, Iqaa107.	1.5	4
59	Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications. Iranian Journal of Biotechnology, 2018, 16, 164-172.	0.3	4
60	Structural systems pharmacology: A framework for integrating metabolic network and structure-based virtual screening for drug discovery against bacteria. PLoS ONE, 2021, 16, e0261267.	1.1	4
61	Studying the Relationship between Robustness against Mutations in Metabolic Networks and Lifestyle of Organisms. Scientific World Journal, The, 2013, 2013, 1-6.	0.8	3
62	A network biology approach to understanding the importance of chameleon proteins in human physiology and pathology. Amino Acids, 2017, 49, 303-315.	1.2	3
63	Evolution of †Ligandâ€Diffusion Chreodes' on Proteinâ€Surface Models: A Geneticâ€Algorithm Study. Chemistry and Biodiversity, 2007, 4, 2766-2771.	1.0	2
64	FCDECOMP: Decomposition of metabolic networks based on flux coupling relations. Journal of Bioinformatics and Computational Biology, 2014, 12, 1450028.	0.3	2
65	Can scientific journals be classified based on their †citation profiles†M?. South African Journal of Science, 2015, 111, 1-3.	0.3	2
66	Evidence for the relationship between the regulatory effects of microRNAs and attack robustness of biological networks. Computers in Biology and Medicine, 2015, 63, 83-91.	3.9	2
67	On correlated reaction sets and coupled reaction sets in metabolic networks. Journal of Bioinformatics and Computational Biology, 2015, 13, 1571003.	0.3	2
68	Glucose Metabolism: Optimizing Regenerative Functionalities of Mesenchymal Stromal Cells Postimplantation. Tissue Engineering - Part B: Reviews, 2023, 29, 47-61.	2.5	2
69	Application of β-lactamase-dependent prodrugs in clostridial-directed enzyme therapy (CDEPT): A proposal. Medical Hypotheses, 2006, 67, 998-999.	0.8	1
70	Reconstruction of phylogenetic trees of prokaryotes using maximal common intervals. BioSystems, 2014, 124, 86-94.	0.9	1
71	Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications. Iranian Journal of Biotechnology, 2018, 16, e1684.	0.3	1
72	A Constraint-based modeling approach to reach an improved chemically defined minimal medium for recombinant antiEpEX-scFv production by Escherichia coli. Biochemical Engineering Journal, 2022, 179, 108339.	1.8	1

#	Article	IF	CITATIONS
73	Critical assessment of genome-scale metabolic models of Arabidopsis thaliana. Molecular Omics, 2022,	1.4	1
74	Accounting for robustness in modeling signal transduction responses. Journal of Receptor and Signal Transduction Research, 2018, 38, 442-447.	1.3	0
75	A system architecture for parallel analysis of flux-balanced metabolic pathways. Computational Biology and Chemistry, 2020, 88, 107309.	1.1	0
76	Regulation of photosynthesis and vegetative growth of plants by small RNAs., 2020,, 247-275.		0
77	Title is missing!. , 2020, 15, e0240330.		О
78	Title is missing!. , 2020, 15, e0240330.		0
79	Title is missing!. , 2020, 15, e0240330.		O
80	Title is missing!. , 2020, 15, e0240330.		0
81	Title is missing!. , 2020, 15, e0240330.		O
82	Title is missing!. , 2020, 15, e0240330.		0