Pierre Layrolle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2298727/publications.pdf

Version: 2024-02-01

200 papers

14,923 citations

20036 63 h-index 23841 115 g-index

211 all docs

211 docs citations

times ranked

211

16295 citing authors

#	Article	IF	CITATIONS
1	Microbial–stem cell interactions in periodontal disease. Journal of Medical Microbiology, 2022, 71, .	0.7	1
2	Osteonecrosis of the Femoral Head Safely Healed with Autologous, Expanded, Bone Marrow-Derived Mesenchymal Stromal Cells in a Multicentric Trial with Minimum 5 Years Follow-Up. Journal of Clinical Medicine, 2021, 10, 508.	1.0	19
3	Chondrogenic and BMP-4 primings confer osteogenesis potential to human cord blood mesenchymal stromal cells delivered with biphasic calcium phosphate ceramics. Scientific Reports, 2021, 11, 6751.	1.6	4
4	Apoptotic mesenchymal stromal cells support osteoclastogenesis while inhibiting multinucleated giant cells formation in vitro. Scientific Reports, 2021, 11, 12144.	1.6	6
5	PPAR Gamma and Viral Infections of the Brain. International Journal of Molecular Sciences, 2021, 22, 8876.	1.8	15
6	Evaluation of the Chemotherapy Drug Response Using Organotypic Cultures of Osteosarcoma Tumours from Mice Models and Canine Patients. Cancers, 2021, 13, 4890.	1.7	5
7	Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects. Acta Biomaterialia, 2021, 135, 689-704.	4.1	13
8	Bone regenerative issues related to bone grafting biomaterials. , 2020, , 207-215.		2
9	In situ production of pre-vascularized synthetic bone grafts for regenerating critical-sized defects in rabbits. Acta Biomaterialia, 2020, 114, 384-394.	4.1	30
10	Osteoblasts mineralization and collagen matrix are conserved upon specific Col1a2 silencing. Matrix Biology Plus, 2020, 6-7, 100028.	1.9	6
11	Biomaterials Functionalized with MSC Secreted Extracellular Vesicles and Soluble Factors for Tissue Regeneration. Advanced Functional Materials, 2020, 30, 1909125.	7.8	204
12	Biocompatibility and osseointegration of nanostructured titanium dental implants in minipigs. Clinical Oral Implants Research, 2020, 31, 526-535.	1.9	19
13	Early efficacy evaluation of mesenchymal stromal cells (MSC) combined to biomaterials to treat long bone non-unions. Injury, 2020, 51, S63-S73.	0.7	32
14	Reconstruction of Large Skeletal Defects: Current Clinical Therapeutic Strategies and Future Directions Using 3D Printing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 61.	2.0	109
15	Cold Plasma-Treated Ringer's Saline: A Weapon to Target Osteosarcoma. Cancers, 2020, 12, 227.	1.7	57
16	Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds. Scientific Reports, 2020, 10, 7068.	1.6	51
17	A Developmental Engineering-Based Approach to Bone Repair: Endochondral Priming Enhances Vascularization and New Bone Formation in a Critical Size Defect. Frontiers in Bioengineering and Biotechnology, 2020, 8, 230.	2.0	22
18	Biomarkers of bone healing induced by a regenerative approach based on expanded bone marrow–derived mesenchymal stromal cells. Cytotherapy, 2019, 21, 870-885.	0.3	9

#	Article	IF	Citations
19	Impact of humanised isolation and culture conditions on stemness and osteogenic potential of bone marrow derived mesenchymal stromal cells. Scientific Reports, 2019, 9, 16031.	1.6	12
20	Rotator Cuff Tenocytes Differentiate into Hypertrophic Chondrocyte-Like Cells to Produce Calcium Deposits in an Alkaline Phosphatase-Dependent Manner. Journal of Clinical Medicine, 2019, 8, 1544.	1.0	9
21	Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: Consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. Journal of Clinical Periodontology, 2019, 46, 82-91.	2.3	132
22	Translation of a standardized manufacturing protocol for mesenchymal stromal cells: A systematic comparison of validation and manufacturing data. Cytotherapy, 2019, 21, 468-482.	0.3	33
23	Impact of nanotechnology on dental implants. , 2019, , 385-399.		0
24	Nanostructured surface coatings for titanium alloy implants. Journal of Materials Research, 2019, 34, 1892-1899.	1.2	26
25	Low-Dose Pesticide Mixture Induces Accelerated Mesenchymal Stem Cell Aging In Vitro. Stem Cells, 2019, 37, 1083-1094.	1.4	16
26	Immune Modulation by Transplanted Calcium Phosphate Biomaterials and Human Mesenchymal Stromal Cells in Bone Regeneration. Frontiers in Immunology, 2019, 10, 663.	2.2	83
27	Epinephrine Infiltration of Adipose Tissue Impacts MCF7 Breast Cancer Cells and Total Lipid Content. International Journal of Molecular Sciences, 2019, 20, 5626.	1.8	7
28	Vertical Bone Regeneration with Synthetic Biomimetic Calcium Phosphate onto the Calvaria of Rats. Tissue Engineering - Part C: Methods, 2019, 25, 1-11.	1.1	7
29	Feasibility and safety of treating non-unions in tibia, femur and humerus with autologous, expanded, bone marrow-derived mesenchymal stromal cells associated with biphasic calcium phosphate biomaterials in a multicentric, non-comparative trial. Biomaterials, 2019, 196, 100-108.	5.7	87
30	Clinical Safety of a New Synthetic Resorbable Dental Membrane: A Case Series Study. Journal of Oral Implantology, 2018, 44, 138-145.	0.4	7
31	Impact of nanotechnology on dental implants. , 2018, , 83-97.		2
32	Comparison of Tumor- and Bone Marrow-Derived Mesenchymal Stromal/Stem Cells from Patients with High-Grade Osteosarcoma. International Journal of Molecular Sciences, 2018, 19, 707.	1.8	19
33	Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Research and Therapy, 2018, 9, 213.	2.4	132
34	Early Fracture Healing is Delayed in the Col1a2+/G610C Osteogenesis Imperfecta Murine Model. Calcified Tissue International, 2018, 103, 653-662.	1.5	9
35	Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomaterialia, 2017, 59, 94-107.	4.1	68
36	IL-38 overexpression induces anti-inflammatory effects in mice arthritis models and in human macrophages in vitro. Annals of the Rheumatic Diseases, 2017, 76, 1304-1312.	0.5	101

3

#	Article	IF	CITATIONS
37	Fresh and in vitro osteodifferentiated human amniotic membrane, alone or associated with an additional scaffold, does not induce ectopic bone formation in Balb/c mice. Cell and Tissue Banking, 2017, 18, 17-25.	0.5	12
38	OP0093 ll-38 overexpression induces anti-inflammatory effects in mice arthritis models and in human macrophages in vitro. , 2017, , .		1
39	Inferior In Vivo Osteogenesis and Superior Angiogeneis of Human Adipose-Derived Stem Cells Compared with Bone Marrow-Derived Stem Cells Cultured in Xeno-Free Conditions. Stem Cells Translational Medicine, 2017, 6, 2160-2172.	1.6	67
40	02.12â \in ll-38 overexpression induces anti-inflammatory effects in mice arthritis models and in human macrophages in vitro. , 2017, , .		0
41	Mimicking the Biochemical and Mechanical Extracellular Environment of the Endochondral Ossification Process to Enhance the <i>In Vitro</i> Mineralization Potential of Human Mesenchymal Stem Cells. Tissue Engineering - Part A, 2017, 23, 1466-1478.	1.6	16
42	OP0190â€Histological characterization of rotator cuff calcific tendinopathy. , 2017, , .		0
43	Impact of biomaterial microtopography on bone regeneration: comparison of three hydroxyapatites. Clinical Oral Implants Research, 2017, 28, e201-e207.	1.9	27
44	Changes of Bone Turnover Markers in Long Bone Nonunions Treated with a Regenerative Approach. Stem Cells International, 2017, 2017, 1-11.	1.2	11
45	Biocompatibility, resorption and biofunctionality of a new synthetic biodegradable membrane for guided bone regeneration. Biomedical Materials (Bristol), 2016, 11, 045012.	1.7	64
46	Bone regeneration strategies with bone marrow stromal cells in orthopaedic surgery. Current Research in Translational Medicine, 2016, 64, 83-90.	1.2	68
47	Mesenchymal stem cells increase proliferation but do not change quiescent state of osteosarcoma cells: Potential implications according to the tumor resection status. Journal of Bone Oncology, 2016, 5, 5-14.	1.0	27
48	Controlled implant/soft tissue interaction by nanoscale surface modifications of 3D porous titanium implants. Nanoscale, 2015, 7, 9908-9918.	2.8	39
49	Development of a simple procedure for the treatment of femoral head osteonecrosis with intra-osseous injection of bone marrow mesenchymal stromal cells: study of their biodistribution in the early time points after injection. Stem Cell Research and Therapy, 2015, 6, 68.	2.4	43
50	Oncostatin M, an Inflammatory Cytokine Produced by Macrophages, Supports Intramembranous Bone Healing in a Mouse Model of Tibia Injury. American Journal of Pathology, 2015, 185, 765-775.	1.9	116
51	Inhibition of osteolysis and increase of bone formation after local administration of siRNA-targeting RANK in a polyethylene particle-induced osteolysis model. Acta Biomaterialia, 2015, 13, 150-158.	4.1	36
52	3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds. Biomedical Materials (Bristol), 2015, 10, 045019.	1.7	46
53	Bone Apposition on Nanoporous Titanium Implants. , 2015, , 427-444.		2
54	Comparative bone tissue integration of nanostructured and microroughened dental implants. Nanomedicine, 2015, 10, 741-751.	1.7	20

#	Article	IF	Citations
55	Effect of Leukocyte―and Plateletâ€Rich Fibrin (<scp>L</scp> ―scp>PRF) on Bone Regeneration: A Study in Rabbits. Clinical Implant Dentistry and Related Research, 2015, 17, e143-52.	1.6	32
56	Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomaterialia, 2015, 11, 494-502.	4.1	213
57	Allele-specific Col1a1 silencing reduces mutant collagen in fibroblasts from Brtl mouse, a model for classical osteogenesis imperfecta. European Journal of Human Genetics, 2014, 22, 667-674.	1.4	21
58	Orthopaedic implant failure: aseptic implant looseningâ€"the contribution and future challenges of mouse models in translational research. Clinical Science, 2014, 127, 277-293.	1.8	48
59	Cell morphology and focal adhesion location alters internal cell stress. Journal of the Royal Society Interface, 2014, 11, 20140885.	1.5	39
60	Osteoblastic differentiation and potent osteogenicity of three-dimensional hBMSC-BCP particle constructs. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 364-376.	1.3	17
61	Transportation Conditions for Prompt Use of i>Ex Vivo Expanded and Freshly Harvested Clinical-Grade Bone Marrow Mesenchymal Stromal/Stem Cells for Bone Regeneration. Tissue Engineering - Part C: Methods, 2014, 20, 239-251.	1.1	39
62	Correlating ex vivo and in vivo osteogenic assays for quality control of clinically destined CGMP grade BM-MSC. Cytotherapy, 2014, 16, S96-S97.	0.3	0
63	Cell therapy for bone repair. Orthopaedics and Traumatology: Surgery and Research, 2014, 100, S107-S112.	0.9	112
64	Correlation between primary stability and bone healing of surface treated titanium implants in the femoral epiphyses of rabbits. Journal of Materials Science: Materials in Medicine, 2014, 25, 1941-1951.	1.7	4
65	Osteoblastic and osteoclastic differentiation of human mesenchymal stem cells and monocytes in a miniaturized three-dimensional culture with mineral granules. Acta Biomaterialia, 2014, 10, 5139-5147.	4.1	18
66	Bone tissue formation with human mesenchymal stem cells and biphasic calcium phosphate ceramics: The local implication of osteoclasts and macrophages. Biomaterials, 2014, 35, 9660-9667.	5.7	133
67	Liposomal clodronate inhibition of osteoclastogenesis and osteoinduction by submicrostructured beta-tricalcium phosphate. Biomaterials, 2014, 35, 5088-5097.	5.7	110
68	Effects of a novel ceramic biomaterial on immune modulatory properties and differentiation potential of mesenchymal stromal cells. Cytotherapy, 2014, 16, S90-S91.	0.3	0
69	Pre-clinical studies of bone regeneration with human bone marrow stromal cells and biphasic calcium phosphate. Stem Cell Research and Therapy, 2014, 5, 114.	2.4	100
70	Bone Regeneration Using Porous Titanium Particles versus Bovine Hydroxyapatite: A Sinus Lift Study in Rabbits. Clinical Implant Dentistry and Related Research, 2013, 15, 412-426.	1.6	18
71	Pre-vascularization of bone tissue-engineered constructs. Stem Cell Research and Therapy, 2013, 4, 96.	2.4	31
72	Correlating ex vivo and in vivo osteogenic assays for quality control of clinically destined cGMP grade BM-MSC. Cytotherapy, 2013, 15, S18-S19.	0.3	0

#	Article	IF	Citations
73	Advancing approaches for bone regeneration using freshly shipped marrow human mesenchymal stromal/stem cell produced into several european cGMP facilities. Cytotherapy, 2013, 15, S46.	0.3	0
74	Impact of Nanotechnology on Dental Implants. , 2013, , 323-336.		0
75	Computational model combined with in vitro experiments to analyse mechanotransduction during mesenchymal stem cell adhesion., 2013, 25, 97-113.		17
76	The Human Nose Offers a New Stem Cell Source for Bone Injuries. , 2013, , 64-81.		0
77	Effects Of a Novel Ceramic Biomaterial On Immune Modulatory Properties and Differentiation Potential Of Mesenchymal Stromal Cells. Blood, 2013, 122, 4858-4858.	0.6	0
78	Healing of long-bone defects in sheep metatarsals using bioceramics and mesenchymal stem cells. Current Orthopaedic Practice, 2012, 23, 369-376.	0.1	1
79	Research Highlights. Nanomedicine, 2012, 7, 181-183.	1.7	2
80	Impact of Nanotechnology on Dental Implants. , 2012, , 71-84.		3
81	Cell differentiation and osseointegration influenced by nanoscale anodized titanium surfaces. Nanomedicine, 2012, 7, 967-980.	1.7	57
82	Early adhesion of human mesenchymal stem cells on TiO ₂ surfaces studied by singleâ€cell force spectroscopy measurements. Journal of Molecular Recognition, 2012, 25, 262-269.	1.1	20
83	Pericyte-Like Progenitors Show High Immaturity and Engraftment Potential as Compared with Mesenchymal Stem Cells. PLoS ONE, 2012, 7, e48648.	1.1	50
84	Consistent Osteoblastic Differentiation of Human Mesenchymal Stem Cells with Bone Morphogenetic Protein 4 and Low Serum. Tissue Engineering - Part C: Methods, 2011, 17, 249-259.	1.1	36
85	Bioreactors for Bone Tissue Engineering. International Journal of Artificial Organs, 2011, 34, 259-270.	0.7	38
86	Influence of space-filling materials in subantral bone augmentation: blood clot vs. autogenous bone chips vs. bovine hydroxyapatite. Clinical Oral Implants Research, 2011, 22, 538-545.	1.9	52
87	Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. Journal of Cellular and Molecular Medicine, 2011, 15, 1266-1286.	1.6	116
88	Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate. Journal of Materials Science: Materials in Medicine, 2011, 22, 1707-1717.	1.7	36
89	Biomimetic Materials for Bone Tissue Engineering – State of the Art and Future Trends. Advanced Engineering Materials, 2011, 13, B135.	1.6	61
90	Behaviour of mesenchymal stem cells, fibroblasts and osteoblasts on smooth surfaces. Acta Biomaterialia, 2011, 7, 1525-1534.	4.1	76

#	Article	IF	CITATIONS
91	Microporous Biphasic Calcium Phosphate Granules (MBCP®) Retain Immunological Properties of Bone Marrow-Derived Mesenchymal Stromal Cells and Promote Osteoblastic Differentiation. Blood, 2011, 118, 1924-1924.	0.6	1
92	Adhesion and osteogenic differentiation of human mesenchymal stem cells on titanium nanopores., 2011, 22, 84-96.		114
93	Porous beta tricalcium phosphate scaffolds used as a BMPâ€⊋ delivery system for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1105-1114.	2.1	48
94	Macrophage and osteoblast responses to biphasic calcium phosphate microparticles. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1588-1595.	2.1	24
95	Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone. Proceedings of SPIE, 2010, , .	0.8	0
96	Osteoblastic differentiation of human mesenchymal stem cells with platelet lysate. Biomaterials, 2010, 31, 270-278.	5.7	190
97	3D environment on human mesenchymal stem cells differentiation for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2010, 21, 981-987.	1.7	46
98	Hydrogel/calcium phosphate composites require specific properties for three-dimensional culture of human bone mesenchymal cells. Acta Biomaterialia, 2010, 6, 2932-2939.	4.1	28
99	Experimental Animal Models in Periodontology: A Review. Open Dentistry Journal, 2010, 4, 37-47.	0.2	170
100	Cell interaction with nanopatterned surface of implants. Nanomedicine, 2010, 5, 937-947.	1.7	86
101	Nanotechnology and Dental Implants. International Journal of Biomaterials, 2010, 2010, 1-9.	1.1	87
102	The Human Nose Harbors a Niche of Olfactory Ectomesenchymal Stem Cells Displaying Neurogenic and Osteogenic Properties. Stem Cells and Development, 2010, 19, 853-866.	1.1	205
103	Sol–gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity. Acta Biomaterialia, 2009, 5, 735-742.	4.1	55
104	Correlating implant stability to bone structure. Clinical Oral Implants Research, 2009, 20, 1140-1145.	1.9	135
105	Calcium Phosphate Coated Rapid Prototyped Porous Titanium Scaffolds. Key Engineering Materials, 2008, 361-363, 907-910.	0.4	0
106	Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomaterialia, 2008, 4, 535-543.	4.1	250
107	Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials, 2008, 29, 1177-1188.	5.7	183
108	Bone tissue formation in sheep muscles induced by a biphasic calcium phosphate ceramic and fibrin glue composite. Journal of Materials Science: Materials in Medicine, 2008, 19, 667-675.	1.7	70

#	Article	IF	Citations
109	Bone growth in rapid prototyped porous titanium implants. Journal of Biomedical Materials Research - Part A, 2008, 85A, 664-673.	2.1	101
110	Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials, 2008, 29, 2608-2615.	5.7	168
111	Radio frequency plasma treatments on titanium for enhancement of bioactivity. Acta Biomaterialia, 2008, 4, 1953-1962.	4.1	16
112	Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood, 2008, 111, 2631-2635.	0.6	238
113	Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits. Clinical Oral Implants Research, 2008, 19, 1103-1110.	1.9	68
114	Osteoblastic cell behavior on nanostructured metal implants. Nanomedicine, 2008, 3, 61-71.	1.7	27
115	Selfâ€Hardening Hydrogel for Bone Tissue Engineering. Macromolecular Symposia, 2008, 266, 30-35.	0.4	7
116	<i>In Vivo</i> Performance of an Injectable Biphasic Calcium Phosphate Bone Filler. Key Engineering Materials, 2008, 396-398, 583-586.	0.4	1
117	Flow and mass transfer modelling for tissue engineering applications. Computer Methods in Biomechanics and Biomedical Engineering, 2008, 11, 53-55.	0.9	0
118	Development of a Cellular Biochip Mimicking in Vitro Organs for Chronic Toxicity Analysis., 2007,,.		0
119	Multiphasic Biomaterials: A Concept for Bone Substitutes Developed in the "Pays de la Loire". Key Engineering Materials, 2007, 361-363, -17–1.	0.4	1
120	Calcium Phosphate Coatings on Titanium Alloy via an Electrodeposition Method. Key Engineering Materials, 2007, 330-332, 549-552.	0.4	0
121	Comparison of Osteoinduction by Autologous Bone and Biphasic Calcium Phosphate Ceramic in Goats. Key Engineering Materials, 2007, 330-332, 1063-1066.	0.4	3
122	Macro/Microporous Biphasic Calcium Phosphate Cylinders and Resorbable Collagen Membranes for Guided Bone Growth. Key Engineering Materials, 2007, 361-363, 439-442.	0.4	0
123	Histomorphometric Evaluation of Bone Response to Different Titanium Implant Surfaces. Key Engineering Materials, 2007, 361-363, 613-616.	0.4	0
124	Hybrid composites of calcium phosphate granules, fibrin glue, and bone marrow for skeletal repair. Journal of Biomedical Materials Research - Part A, 2007, 81A, 399-408.	2.1	23
125	Protein mapping of calcium carbonate biominerals by immunogold. Biomaterials, 2007, 28, 2368-2377.	5 . 7	49
126	The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials, 2007, 28, 3295-3305.	5.7	102

#	Article	lF	Citations
127	Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 2007, 23, 844-854.	1.6	2,031
128	Osteogenic properties of calcium phosphate ceramics and fibrin glue based composites. Journal of Materials Science: Materials in Medicine, 2007, 18, 225-235.	1.7	50
129	Inflammatory reaction in rats muscle after implantation of biphasic calcium phosphate micro particles. Journal of Materials Science: Materials in Medicine, 2007, 18, 287-294.	1.7	54
130	An electrodeposition method of calcium phosphate coatings on titanium alloy. Journal of Materials Science: Materials in Medicine, 2007, 18, 381-390.	1.7	72
131	Interactions of total bone marrow cells with increasing quantities of macroporous calcium phosphate ceramic granules. Journal of Materials Science: Materials in Medicine, 2007, 18, 1983-1990.	1.7	38
132	Nanostructured biomaterials. Nanomedicine, 2006, 1, 493-494.	1.7	4
133	Study of osteoblastic cells in a microfluidic environment. Biomaterials, 2006, 27, 586-595.	5.7	145
134	Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering. Biomaterials, 2006, 27, 2716-2722.	5 . 7	112
135	Osteointegration of femoral stem prostheses with a bilayered calcium phosphate coating. Biomaterials, 2006, 27, 1119-1128.	5.7	42
136	Bone repair using a new injectable self-crosslinkable bone substitute. Journal of Orthopaedic Research, 2006, 24, 628-635.	1.2	96
137	Bone Growth in Porous Titanium Implants Made by Rapid Prototyping. Key Engineering Materials, 2006, 309-311, 1099-1104.	0.4	4
138	Ostéointégration d'implants orthopédiques et dentaires. Materiaux Et Techniques, 2006, 94, 71-76.	0.3	0
139	Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V. Biomaterials, 2005, 26, 23-36.	5.7	205
140	Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs. Biomaterials, 2005, 26, 5231-5239.	5.7	103
141	Small-animal models for testing macroporous ceramic bone substitutes. Journal of Biomedical Materials Research Part B, 2005, 72B, 69-78.	3.0	71
142	In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials, 2005, 26, 157-165.	5.7	131
143	Caspartin and Calprismin, Two Proteins of the Shell Calcitic Prisms of the Mediterranean Fan Mussel Pinna nobilis. Journal of Biological Chemistry, 2005, 280, 33895-33908.	1.6	129
144	Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone, 2005, 36, 1086-1093.	1.4	255

#	Article	IF	CITATIONS
145	Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. Journal of Controlled Release, 2004, 99, 127-137.	4.8	400
146	Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials, 2004, 25, 583-592.	5.7	161
147	Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials, 2004, 25, 2901-2910.	5 . 7	165
148	Bone Morphogenetic Protein 2 Incorporated into Biomimetic Coatings Retains Its Biological Activity. Tissue Engineering, 2004, 10, 101-108.	4.9	132
149	A Review of Bioceramics and Fibrin Sealant. , 2004, 8, 1-11.		152
150	Calcium phosphate interactions with titanium oxide and alumina substrates: an XPS study. Journal of Materials Science: Materials in Medicine, 2003, 14, 419-425.	1.7	38
151	In vitroandin vivodegradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants. Journal of Biomedical Materials Research - Part A, 2003, 64A, 378-387.	2.1	182
152	Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. Journal of Biomedical Materials Research - Part A, 2003, 66A, 779-788.	2.1	210
153	Remineralization of demineralized albuminâ€calcium phosphate coatings. Journal of Biomedical Materials Research - Part A, 2003, 67A, 1155-1162.	2.1	21
154	Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats., 2003, 67B, 655-665.		231
155	Proteins incorporated into biomimetically prepared calcium phosphate coatings modulate their mechanical strength and dissolution rate. Biomaterials, 2003, 24, 65-70.	5 . 7	144
156	Novel Method to Manufacture Porous Hydroxyapatite by Dualâ€Phase Mixing. Journal of the American Ceramic Society, 2003, 86, 65-72.	1.9	58
157	Bone Formation by Mesenchymal Progenitor Cells Cultured on Dense and Microporous Hydroxyapatite Particles. Tissue Engineering, 2003, 9, 1179-1188.	4.9	63
158	Toughening of Hydroxyapatite through Interpenetrating Organic/Inorganic Microstructure. Key Engineering Materials, 2003, 240-242, 147-150.	0.4	3
159	Macroporous Biphasic Calcium Phosphate Scaffold with High Permeability/Porosity Ratio. Tissue Engineering, 2003, 9, 535-548.	4.9	191
160	Improvement of Porous Titanium with Thicker Struts. Key Engineering Materials, 2003, 240-242, 547-550.	0.4	16
161	Osteo-Integration of Plasma-Spray, Biomimetic Octacalcium Phosphate and Carbonate-Apatite Coatings on Titanium Implants. Key Engineering Materials, 2003, 240-242, 387-390.	0.4	2
162	Osteoinductive Properties of Micro Macroporous Biphasic Calcium Phosphate Bioceramics. Key Engineering Materials, 2003, 254-256, 1005-1008.	0.4	28

#	Article	IF	Citations
163	Introduction of Ectopic Bone Formation by BMP-2 Incorporated Biomimetically into Calcium Phosphate Coatings of Titanium-Alloy Implants. Key Engineering Materials, 2003, 240-242, 667-670.	0.4	8
164	Accurate Geometric Characterization of Macroporous Scaffold of Tissue Engineering. Key Engineering Materials, 2003, 240-242, 541-546.	0.4	4
165	Preparation and Characterization of Porous Titanium. Key Engineering Materials, 2002, 218-220, 51-54.	0.4	46
166	Proteins Modulate the Properties of Biomimetic Calcium Phosphate Coatings on Titanium Implants. Key Engineering Materials, 2002, 218-220, 157-160.	0.4	0
167	Resorbability and solubility of zinc-containing tricalcium phosphate. Journal of Biomedical Materials Research Part B, 2002, 60, 224-231.	3.0	81
168	Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part B, 2002, 61, 109-120.	3.0	187
169	Biomimetic calcium phosphate coatings on Polyactive® 1000/70/30. Journal of Biomedical Materials Research Part B, 2002, 59, 535-546.	3.0	50
170	Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution. Biomaterials, 2002, 23, 1921-1930.	5.7	262
171	Nucleation of biomimetic Ca–P coatings on Ti6Al4V from a SBF×5 solution: influence of magnesium. Biomaterials, 2002, 23, 2211-2220.	5.7	236
172	Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium. Biomaterials, 2002, 23, 4143-4153.	5.7	214
173	Bone growth in biomimetic apatite coated porous Polyactive® 1000PEGT70PBT30 implants. Biomaterials, 2002, 23, 4649-4656.	5.7	64
174	Biomimetic Hydroxyapatite Coating on Metal Implants. Journal of the American Ceramic Society, 2002, 85, 517-522.	1.9	447
175	Osteoclastic resorption of biomimetic calcium phosphate coatingsin vitro. Journal of Biomedical Materials Research Part B, 2001, 56, 208-215.	3.0	148
176	Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. Journal of Biomedical Materials Research Part B, 2001, 57, 327-335.	3.0	192
177	Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate. Journal of Materials Science: Materials in Medicine, 2001, 12, 529-534.	1.7	149
178	Biomimetic Apatite through a Self-Assembly Process. Key Engineering Materials, 2001, 218-220, 39-42.	0.4	0
179	Bioceramic Scaffold with Controlled Porous Structure for Bone Tissue Engineering. Key Engineering Materials, 2001, 218-220, 25-30.	0.4	10
180	Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. , 2000, 50, 184-190.		203

#	Article	IF	Citations
181	Calcium level-responsivein-vitro zinc release from zinc containing tricalcium phosphate (ZnTCP). Journal of Biomedical Materials Research Part B, 2000, 52, 819-824.	3.0	40
182	Initial events at the bioactive glass surface in contact with protein-containing solutions. Journal of Biomedical Materials Research Part B, 2000, 52, 825-830.	3.0	46
183	Existence of Posner's Cluster in Vacuum. Journal of Physical Chemistry A, 2000, 104, 5111-5114.	1.1	76
184	Incorporation of Proteins into Biomimetic Hydroxyapatite Coatings. Key Engineering Materials, 2000, 192-195, 71-74.	0.4	3
185	Biomimetic Calcium Phosphate Coatings and Their Biological Performances. Key Engineering Materials, 2000, 192-195, 391-394.	0.4	4
186	Resorbability Reduction by the Incorporation of Zinc into Tricalcium Phosphate. Key Engineering Materials, 2000, 192-195, 199-202.	0.4	4
187	In Vitro Dissolution of Various Calcium-Phosphate Coatings on Ti6Al4V. Key Engineering Materials, 2000, 192-195, 67-70.	0.4	6
188	Symmetry of Posner's Cluster. Journal of the American Chemical Society, 2000, 122, 8323-8324.	6.6	61
189	Biomimetic calcium phosphate coatings on Ti6Al4V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3â ^{^2} . Bone, 1999, 25, 107S-111S.	1.4	219
190	Biomimetic Coatings on Orthopedic Implants: a Review. Materials Research Society Symposia Proceedings, 1999, 599, 109.	0.1	8
191	Fast Formation of Biomimetic Ca-P Coatings on Ti6Al4V. Materials Research Society Symposia Proceedings, 1999, 599, 135.	0.1	18
192	Bone tissue engineering on calcium phosphate-coated titanium plates utilizing cultured rat bone marrow cells: a preliminary study. Journal of Materials Science: Materials in Medicine, 1998, 9, 859-863.	1.7	18
193	Solâ€Gel Synthesis of Amorphous Calcium Phosphate and Sintering into Microporous Hydroxyapatite Bioceramics. Journal of the American Ceramic Society, 1998, 81, 1421-1428.	1.9	216
194	SOL-GEL SYNTHESIS OF ZINC CONTAINING. Phosphorus Research Bulletin, 1996, 6, 63-66.	0.1	4
195	Synthesis in Pure Ethanol and Characterization of Nanosized Calcium Phosphate Fluoroapatite. Chemistry of Materials, 1996, 8, 134-144.	3.2	48
196	Characterization and Reactivity of Nanosized Calcium Phosphates Prepared in Anhydrous Ethanol. Chemistry of Materials, 1994, 6, 1996-2004.	3.2	102
197	Sonochemistry in the diphosphirane series. Tetrahedron Letters, 1991, 32, 5965-5968.	0.7	22
198	Evaluation of bone formation capacities of human adipose-derived stromal cells cultured in platelet growth factor-enriched plasma medium Bone Abstracts, 0, , .	0.0	0

#	Article	IF	CITATIONS
199	Mesenchymal stromal stem cells in pediatric orthopedic oncology, focus on osteosarcoma. Bone Abstracts, 0, , .	0.0	O
200	<i>In Situ</i> Production of Pre-Vascularized Synthetic Bone Grafts for Regenerating Critical-Sized Defects in Rabbits. SSRN Electronic Journal, 0, , .	0.4	0