Julien H Lumeau

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2298671/julien-h-lumeau-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

87	1,036	17	27
papers	citations	h-index	g-index
117 ext. papers	1,359 ext. citations	3.4 avg, IF	4.3 L-index

#	Paper	IF	Citations
87	Multipass lock-in thermography for the study of optical coating absorption <i>Applied Optics</i> , 2022 , 61, 978-988	1.7	O
86	Preventing Corrosion of Aluminum Metal with Nanometer-Thick Films of Al2O3 Capped with TiO2 for Ultraviolet Plasmonics. <i>ACS Applied Nano Materials</i> , 2021 , 4, 7199-7205	5.6	4
85	Reconfigurable Flat Optics with Programmable Reflection Amplitude Using Lithography-Free Phase-Change Material Ultra-Thin Films. <i>Advanced Optical Materials</i> , 2021 , 9, 2001291	8.1	9
84	Beam-size effects on the measurement of sub-picosecond intrinsic laser induced damage threshold of dielectric oxide coatings. <i>Applied Optics</i> , 2021 , 60, 8569-8578	1.7	1
83	Automated optical monitoring wavelength selection for thin-film filters. <i>Optics Express</i> , 2021 , 29, 33398	B- 3 341	31
82	Excitation of Bloch Surface Waves in Zero-Admittance Multilayers for High-Sensitivity Sensor Applications. <i>Physical Review Applied</i> , 2020 , 13,	4.3	7
81	In-situ interferometric monitoring of optical coatings. <i>Optics Express</i> , 2020 , 28, 22012-22026	3.3	O
80	Adhesion layer influence on controlling the local temperature in plasmonic gold nanoholes. <i>Nanoscale</i> , 2020 , 12, 2524-2531	7.7	8
79	CMOS-compatible all-dielectric metalens for improving pixel photodetector arrays. <i>APL Photonics</i> , 2020 , 5, 116105	5.2	8
78	Enhanced Four-Wave Mixing in Doubly Resonant Si Nanoresonators. <i>ACS Photonics</i> , 2019 , 6, 1295-1301	6.3	18
77	Extending Single-Molecule FI Ester Resonance Energy Transfer (FRET) Range beyond 10 Nanometers in Zero-Mode Waveguides. <i>ACS Nano</i> , 2019 , 13, 8469-8480	16.7	30
76	Broadband antireflection coatings for visible and infrared ranges. CEAS Space Journal, 2019, 11, 567-57	81.2	6
75	High-performance thin-film optical filters with stress compensation. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2019 , 36, C113-C121	1.8	6
74	Semi-automated method for the determination of the all-optical monitoring strategy of complex thin-film filters. <i>Optics Express</i> , 2019 , 27, 12373-12390	3.3	4
73	Photosensitive chalcogenide metasurfaces supporting bound states in the continuum. <i>Optics Express</i> , 2019 , 27, 33847-33853	3.3	15
72	Large aperture, highly uniform narrow bandpass Fabry-Perot filter using photosensitive AsS thin films. <i>Optics Letters</i> , 2019 , 44, 351-354	3	3
71	Linearly variable filters fabricated by magnetron sputtering technology 2019,		1

(2015-2018)

70	Use of a broadband monitoring system for the determination of the optical constants of a dielectric bilayer. <i>Applied Optics</i> , 2018 , 57, 877-883	1.7	3
69	Trinary mappings: a tool for the determination of potential spectral paths for optical monitoring of optical interference filters. <i>Applied Optics</i> , 2018 , 57, 7012-7020	1.7	2
68	Coating stress analysis and compensation for iridium-based x-ray mirrors. <i>Applied Optics</i> , 2018 , 57, 8775	5-8. 7 79	6
67	Complex optical interference filters with stress compensation for space applications. <i>CEAS Space Journal</i> , 2017 , 9, 441-449	1.2	13
66	A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass. <i>International Materials Reviews</i> , 2017 , 62, 348-366	16.1	21
65	Accurate analysis of mechanical stress in dielectric multilayers. <i>Optics Letters</i> , 2017 , 42, 3217-3220	3	8
64	Determination of the optical constants of a dielectric layer by processing in situ spectral transmittance measurements along the time dimension. <i>Applied Optics</i> , 2017 , 56, C181-C187	0.2	6
63	In situ optical monitoring of Fabry-Perot multilayer structures: analysis of current techniques and optimized procedures. <i>Optics Express</i> , 2017 , 25, 18040-18055	3.3	6
62	Micromirrors with controlled amplitude and phase. <i>Applied Optics</i> , 2017 , 56, 5655-5660	1.7	1
61	All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules. <i>Nano Letters</i> , 2016 , 16, 5143-51	11.5	147
60		11.5	2
	Letters, 2016 , 16, 5143-51 Versatile digital micromirror device-based method for the recording of multilevel optical diffractive	3	
60	Versatile digital micromirror device-based method for the recording of multilevel optical diffractive elements in photosensitive chalcogenide layers (AMTIR-1). <i>Optics Letters</i> , 2016 , 41, 3415-8 Analysis of laser energy deposition leading to damage and ablation of HfO2 and Nb2O5 single layers submitted to 500 fs pulses at 1030 and 343 nm. <i>Applied Physics A: Materials Science and</i>	2.6	2
60 59	Versatile digital micromirror device-based method for the recording of multilevel optical diffractive elements in photosensitive chalcogenide layers (AMTIR-1). <i>Optics Letters</i> , 2016 , 41, 3415-8 Analysis of laser energy deposition leading to damage and ablation of HfO2 and Nb2O5 single layers submitted to 500 fs pulses at 1030 and 343 nm. <i>Applied Physics A: Materials Science and Processing</i> , 2016 , 122, 1	2.6	2
60 59 58	Versatile digital micromirror device-based method for the recording of multilevel optical diffractive elements in photosensitive chalcogenide layers (AMTIR-1). <i>Optics Letters</i> , 2016 , 41, 3415-8 Analysis of laser energy deposition leading to damage and ablation of HfO2 and Nb2O5 single layers submitted to 500 fs pulses at 1030 and 343 nm. <i>Applied Physics A: Materials Science and Processing</i> , 2016 , 122, 1 Advanced optical interference filters based on metal and dielectric layers. <i>Optics Express</i> , 2016 , 24, 209 Optical characterization of photosensitive AMTIR-1 chalcogenide thin layers deposited by electron	3 2.6 25;37	2 1 8
60 59 58 57	Versatile digital micromirror device-based method for the recording of multilevel optical diffractive elements in photosensitive chalcogenide layers (AMTIR-1). Optics Letters, 2016, 41, 3415-8 Analysis of laser energy deposition leading to damage and ablation of HfO2 and Nb2O5 single layers submitted to 500 fs pulses at 1030 and 343 nm. Applied Physics A: Materials Science and Processing, 2016, 122, 1 Advanced optical interference filters based on metal and dielectric layers. Optics Express, 2016, 24, 209 Optical characterization of photosensitive AMTIR-1 chalcogenide thin layers deposited by electron beam deposition. Journal of Non-Crystalline Solids, 2016, 442, 22-28 Electron Paramagnetic Resonance (EPR) studies on the photo-thermo ionization process of	3 2.6 25.37 3.9	2 1 8
60 59 58 57 56	Versatile digital micromirror device-based method for the recording of multilevel optical diffractive elements in photosensitive chalcogenide layers (AMTIR-1). Optics Letters, 2016, 41, 3415-8 Analysis of laser energy deposition leading to damage and ablation of HfO2 and Nb2O5 single layers submitted to 500 fs pulses at 1030 and 343 nm. Applied Physics A: Materials Science and Processing, 2016, 122, 1 Advanced optical interference filters based on metal and dielectric layers. Optics Express, 2016, 24, 209 Optical characterization of photosensitive AMTIR-1 chalcogenide thin layers deposited by electron beam deposition. Journal of Non-Crystalline Solids, 2016, 442, 22-28 Electron Paramagnetic Resonance (EPR) studies on the photo-thermo ionization process of photo-thermo-refractive glasses. Journal of Non-Crystalline Solids, 2016, 452, 320-324 Saturation of multiplexed volume Bragg grating recording. Journal of the Optical Society of America	3 2.6 25.37 3.9	2 1 8 4 11

52	Fabrication of binary volumetric diffractive optical elements in photosensitive chalcogenide AMTIR-1 layers. <i>Optics Letters</i> , 2015 , 40, 3233-6	3	4
51	Complex optical interference filter with stress compensation 2015,		1
50	Gradient of refractive index (GRIN) effect in photo-thermo-refractive glass. <i>Applied Optics</i> , 2015 , 54, 1587	1.7	3
49	Pixelated filters for spatial imaging 2015 ,		2
48	X-ray diffraction study of NaF nano-crystals in photo-thermo-refractive glass. <i>Journal of Non-Crystalline Solids</i> , 2014 , 405, 188-195	3.9	4
47	Absorption and scattering in photo-thermo-refractive glass induced by UV-exposure and thermal development. <i>Optical Materials</i> , 2014 , 36, 621-627	3.3	12
46	DBR and DFB lasers in neodymium- and ytterbium-doped photothermorefractive glasses. <i>Optics Letters</i> , 2014 , 39, 2156-9	3	7
45	Mechanisms and kinetics of short pulse laser-induced destruction of silver-containing nanoparticles in multicomponent silicate photo-thermo-refractive glass. <i>Applied Optics</i> , 2014 , 53, 7362-8	0.2	8
44	Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses. <i>Optical Engineering</i> , 2014 , 53, 051514	1.1	41
43	Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass. <i>Journal of Non-Crystalline Solids</i> , 2013 , 378, 115-120	3.9	22
42	Forced air cooling of volume Bragg gratings for spectral beam combination 2013,		2
41	. IEEE Photonics Technology Letters, 2013 , 25, 25-28	2.2	11
40	Effect of the refractive index change kinetics of photosensitive materials on the diffraction efficiency of reflecting Bragg gratings. <i>Applied Optics</i> , 2013 , 52, 3993-7	1.7	5
39	Modeling of the induced refractive index kinetics in photo-thermo-refractive glass. <i>Optical Materials Express</i> , 2013 , 3, 95	2.6	13
38	Ultimate efficiency of spectral beam combining by volume Bragg gratings. <i>Applied Optics</i> , 2013 , 52, 723	33£ <i>4</i> y2	16
37	Binary volume phase masks in photo-thermo-refractive glass. <i>Optics Letters</i> , 2012 , 37, 1190-2	3	10
36	Longitudinal mode selection in laser cavity by moir ovolume Bragg grating 2012 ,		3
35	Single frequency fiber laser for external volume Bragg resonator 2012 ,		1

(2009-2011)

34	Near-IR absorption in high-purity photothermorefractive glass and holographic optical elements: measurement and application for high-energy lasers. <i>Applied Optics</i> , 2011 , 50, 5905-11	0.2	9
33	Optical detection of attosecond ionization induced by a few-cycle laser field in a transparent dielectric material. <i>Physical Review Letters</i> , 2011 , 106, 147401	7.4	58
32	Single resonance monolithic Fabry-Perot filters formed by volume Bragg gratings and multilayer dielectric mirrors. <i>Optics Letters</i> , 2011 , 36, 1773-5	3	3
31	Liquid[liquid Phase Separation in Photo-Thermo-Refractive Glass. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 145-150	3.8	9
30	Internal Residual Stresses in Partially Crystallized Photo-Thermo-Refractive Glass. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 671-674	3.8	21
29	Effect of Bromine on NaF Crystallization in Photo-Thermo-Refractive Glass. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 2906-2911	3.8	11
28	Photo-thermo-refractive glass co-doped with Nd3+ as a new laser medium. <i>Optical Materials</i> , 2011 , 33, 1970-1974	3.3	11
27	Sodium Fluoride Solubility and Crystallization in Photo-Thermo-Refractive Glass. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 716-721	3.8	21
26	Ultranarrow bandwidth moir reflecting Bragg gratings recorded in photo-thermo-refractive glass. <i>Optics Letters</i> , 2010 , 35, 592-4	3	16
25	Generation and bleaching of intrinsic color centers in photo-thermo-refractive glass matrix. <i>Journal of Non-Crystalline Solids</i> , 2010 , 356, 2363-2368	3.9	9
24	Specific absorption spectra of cerium in multicomponent silicate glasses. <i>Journal of Non-Crystalline Solids</i> , 2010 , 356, 2337-2343	3.9	58
23	Ultra-narrow bandpass filters based on volume Bragg grating technologies 2010,		5
22	Nonlinear photoionization and laser-induced damage in silicate glasses by infrared ultrashort laser pulses. <i>Applied Physics B: Lasers and Optics</i> , 2009 , 96, 127-134	1.9	14
21	Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass. <i>Optical Materials</i> , 2009 , 32, 139-146	3.3	29
20	Viscosity, relaxation and elastic properties of photo-thermo-refractive glass. <i>Journal of Non-Crystalline Solids</i> , 2009 , 355, 126-131	3.9	23
19	Method to assess the homogeneity of partially crystallized glasses: Application to a photo-thermo-refractive glass. <i>Journal of Non-Crystalline Solids</i> , 2009 , 355, 1760-1768	3.9	18
18	Phase Fresnel lens recorded in photo-thermo-refractive glass by selective exposure to infrared ultrashort laser pulses. <i>Optics Letters</i> , 2009 , 34, 40-2	3	12
17	Ultrashort laser pulse diffraction by transmitting volume Bragg gratings in photo-thermo-refractive glass. <i>Optics Letters</i> , 2009 , 34, 2572-4	3	15

16	Non-collinear generation of third harmonic of IR ultrashort laser pulses by PTR glass volume Bragg gratings. <i>Optics Express</i> , 2009 , 17, 3564-73	3.3	2
15	Evolution of Absorption Spectra in the Process of Nucleation in Photo-Thermo-Refractive Glass. <i>Advanced Materials Research</i> , 2008 , 39-40, 395-398	0.5	8
14	Phase-shifted volume Bragg gratings in photo-thermo-refractive glass 2008,		3
13	Photoionization of wide bandgap silicate glasses by ultrashort IR laser pulses 2008,		1
12	Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 425-430	3.9	21
11	Role of bromine on the thermal and optical properties of photo-thermo-refractive glass. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 456-461	3.9	31
10	Nonlinear photosensitivity of photo-thermo-refractive glass by high intensity laser irradiation. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 4070-4074	3.9	18
9	Effect of cooling on the optical properties and crystallization of UV-exposed photo-thermo-refractive glass. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 4730-4736	3.9	15
8	Reflection of light by composite volume holograms: Fresnel corrections and Fabry-Perot spectral filtering. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2008 , 25, 751	-64 ^{.8}	15
7	Accurate determination of the optical performances of antireflective coatings by low coherence reflectometry. <i>Applied Optics</i> , 2007 , 46, 5635-44	1.7	1
6	Large aperture diffractive elements in PTR glass 2006 , 6216, 255		
5	Tunable narrowband filter based on a combination of Fabry-Perot etalon and volume Bragg grating. <i>Optics Letters</i> , 2006 , 31, 2417-9	3	34
4	Ultranarrow bandpass hybrid filter with wide rejection band. Applied Optics, 2006, 45, 1328-32	1.7	8
3	Localized measurement of the optical thickness of a transparent window: application to the study of the photosensitivity of organic polymers. <i>Applied Optics</i> , 2006 , 45, 6099-105	1.7	2
2	Laser trimming of thin-film filters 2005 , 5963, 60		2
1	Application of static masking technique in magnetron sputtering technology for the production of linearly variable filters. <i>CEAS Space Journal</i> ,1	1.2	