Yuta Takamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2298330/publications.pdf

Version: 2024-02-01

		1478505	1125743	
12	323	6	13	
papers	citations	h-index	g-index	
13	13	13	465	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Development of Scaled-Up Synthetic Method for Retinoid X Receptor Agonist NEt-3IB Contributing to Sustainable Development Goals. Chemical and Pharmaceutical Bulletin, 2022, 70, 146-154.	1.3	2
2	Identification of a Vitamin-D Receptor Antagonist, MeTC7, which Inhibits the Growth of Xenograft and Transgenic Tumors <i>In Vivo</i> . Journal of Medicinal Chemistry, 2022, 65, 6039-6055.	6.4	3
3	Fluorescence properties of retinoid X receptor antagonist NEt-SB. Bioorganic and Medicinal Chemistry Letters, 2021, 31, 127666.	2.2	3
4	In Vivo Receptor Visualization and Evaluation of Receptor Occupancy with Positron Emission Tomography. Journal of Medicinal Chemistry, 2021, 64, 5226-5251.	6.4	9
5	Creation of Fluorescent RXR Antagonists Based on CBTF-EE and Application to a Fluorescence Polarization Binding Assay. ACS Medicinal Chemistry Letters, 2021, 12, 1024-1029.	2.8	4
6	A Retinoid X Receptor Agonist Directed to the Large Intestine Ameliorates T-Cell-Mediated Colitis in Mice. Frontiers in Pharmacology, 2021, 12, 715752.	3.5	9
7	Discovery of a "Gatekeeper―Antagonist that Blocks Entry Pathway to Retinoid X Receptors (RXRs) without Allosteric Ligand Inhibition in Permissive RXR Heterodimers. Journal of Medicinal Chemistry, 2021, 64, 430-439.	6.4	11
8	Convenient Retinoid X Receptor Binding Assay Based on Fluorescence Change of the Antagonist NEt-C343. Journal of Medicinal Chemistry, 2021, 64, 861-870.	6.4	6
9	Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science, 2020, 367, .	12.6	255
10	Competitive Binding Assay with an Umbelliferone-Based Fluorescent Rexinoid for Retinoid X Receptor Ligand Screening. Journal of Medicinal Chemistry, 2019, 62, 8809-8818.	6.4	13
11	3H-Imidazo [4,5-b] pyridine-6-carboxylic acid derivatives as rexinoids with reduced teratogenicity. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1891-1894.	2.2	4
12	Fluorine-18 (18F)-labeled retinoid†x†receptor (RXR) partial agonist whose tissue transferability is affected by other RXR ligands. Bioorganic and Medicinal Chemistry, 2019, 27, 3128-3134.	3.0	2