
Ruoning Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2297914/publications.pdf Version: 2024-02-01

PHONING WANG

#	Article	IF	CITATIONS
1	Splice-switching of the insulin receptor pre-mRNA alleviates tumorigenic hallmarks in rhabdomyosarcoma. Npj Precision Oncology, 2022, 6, 1.	2.3	18
2	Succinate dehydrogenase/complex II is critical for metabolic and epigenetic regulation of T cell proliferation and inflammation. Science Immunology, 2022, 7, eabm8161.	5.6	23
3	Targeting KDM4 for treating PAX3-FOXO1–driven alveolar rhabdomyosarcoma. Science Translational Medicine, 2022, 14, .	5.8	16
4	The kinase AKT1 potentiates the suppressive functions of myeloid-derived suppressor cells in inflammation and cancer. Cellular and Molecular Immunology, 2021, 18, 1074-1076.	4.8	7
5	NAD+ supplement potentiates tumor-killing function by rescuing defective TUB-mediated NAMPT transcription in tumor-infiltrated TÂcells. Cell Reports, 2021, 36, 109516.	2.9	50
6	A Simple and Robust Protocol for in vitro Differentiation of Mouse Non-pathogenic T Helper 17 Cells from CD4+ T Cells. Bio-protocol, 2021, 11, e4029.	0.2	0
7	Targeting the spliceosome through RBM39 degradation results in exceptional responses in high-risk neuroblastoma models. Science Advances, 2021, 7, eabj5405.	4.7	32
8	Rapid profiling of G2 phase to mitosis progression by flow cytometry in asynchronous cells. Cell Cycle, 2020, 19, 2897-2905.	1.3	3
9	De novo synthesis and salvage pathway coordinately regulate polyamine homeostasis and determine T cell proliferation and function. Science Advances, 2020, 6, .	4.7	46
10	Inosine is an alternative carbon source for CD8+-T-cell function under glucose restriction. Nature Metabolism, 2020, 2, 635-647.	5.1	150
11	Dynamic metabolic reprogramming in dendritic cells: An early response to influenza infection that is essential for effector function. PLoS Pathogens, 2020, 16, e1008957.	2.1	13
12	Radioisotope-Based Protocol for Determination of Central Carbon Metabolism in T Cells. Methods in Molecular Biology, 2020, 2111, 257-265.	0.4	7
13	Immunotherapeutic Challenges for Pediatric Cancers. Molecular Therapy - Oncolytics, 2019, 15, 38-48.	2.0	26
14	mTOR Is Key to T Cell Transdifferentiation. Cell Metabolism, 2019, 29, 241-242.	7.2	11
15	A Metabolism Toolbox for CAR T Therapy. Frontiers in Oncology, 2019, 9, 322.	1.3	54
16	The Antiviral Apparatus: STING and Oncolytic Virus Restriction. Molecular Therapy - Oncolytics, 2019, 13, 7-13.	2.0	21
17	Education-dependent activation of glycolysis promotes the cytolytic potency of licensed human natural killer cells. Journal of Allergy and Clinical Immunology, 2019, 143, 346-358.e6.	1.5	59
18	MYCN drives glutaminolysis in neuroblastoma and confers sensitivity to an ROS augmenting agent. Cell Death and Disease, 2018, 9, 220.	2.7	46

RUONING WANG

#	Article	IF	CITATIONS
19	Phosphorylation of CDC25C by AMP-activated protein kinase mediates a metabolic checkpoint during cell-cycle G2/M-phase transition. Journal of Biological Chemistry, 2018, 293, 5185-5199.	1.6	23
20	Glucocorticoid receptor promotes the function of myeloid-derived suppressor cells by suppressing HIF1α-dependent glycolysis. Cellular and Molecular Immunology, 2018, 15, 618-629.	4.8	56
21	Metabolic Reprogramming in Modulating T Cell Reactive Oxygen Species Generation and Antioxidant Capacity. Frontiers in Immunology, 2018, 9, 1075.	2.2	75
22	Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. ELife, 2018, 7, .	2.8	116
23	Efficient Codelivery of Paclitaxel and Curcumin by Novel Bottlebrush Copolymer-based Micelles. Molecular Pharmaceutics, 2017, 14, 2378-2389.	2.3	60
24	MYC and HIF in shaping immune response and immune metabolism. Cytokine and Growth Factor Reviews, 2017, 35, 63-70.	3.2	69
25	Targeting Histone Demethylases in MYC-Driven Neuroblastomas with Ciclopirox. Cancer Research, 2017, 77, 4626-4638.	0.4	42
26	MYC in Regulating Immunity: Metabolism and Beyond. Genes, 2017, 8, 88.	1.0	67
27	Rapid Profiling Cell Cycle by Flow Cytometry Using Concurrent Staining of DNA and Mitotic Markers. Bio-protocol, 2017, 7, .	0.2	28
28	Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature, 2016, 532, 389-393.	13.7	235
29	MyoD Regulates Skeletal Muscle Oxidative Metabolism Cooperatively with Alternative NF-κB. Cell Reports, 2016, 17, 514-526.	2.9	75
30	Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1 î± -dependent. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1564-1569.	3.3	177
31	Multifaceted Modulation of SIRT1 in Cancer and Inflammation. Critical Reviews in Oncogenesis, 2015, 20, 49-64.	0.2	102
32	Dendritic cell SIRT1–HIF1α axis programs the differentiation of CD4 ⁺ T cells through IL-12 and TGF-β1. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E957-65.	3.3	95
33	T cell metabolic reprogramming and plasticity. Molecular Immunology, 2015, 68, 507-512.	1.0	54
34	Targeting S1P1 Receptor Protects against Murine Immunological Hepatic Injury through Myeloid-Derived Suppressor Cells. Journal of Immunology, 2014, 192, 3068-3079.	0.4	43
35	The Intercellular Metabolic Interplay between Tumor and Immune Cells. Frontiers in Immunology, 2014, 5, 358.	2.2	77
36	Widespread Mitochondrial Depletion via Mitophagy Does Not Compromise Necroptosis. Cell Reports, 2013, 5, 878-885.	2.9	240

RUONING WANG

#	Article	IF	CITATIONS
37	The immune diet: meeting the metabolic demands of lymphocyte activation. F1000 Biology Reports, 2012, 4, 9.	4.0	25
38	Metabolic reprogramming and metabolic dependency in <scp>T</scp> cells. Immunological Reviews, 2012, 249, 14-26.	2.8	146
39	Metabolic checkpoints in activated T cells. Nature Immunology, 2012, 13, 907-915.	7.0	413
40	T cell metabolism and the immune response. Seminars in Immunology, 2012, 24, 399-404.	2.7	29
41	HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. Journal of Experimental Medicine, 2011, 208, 1367-1376.	4.2	1,447
42	The Transcription Factor Myc Controls Metabolic Reprogramming upon T Lymphocyte Activation. Immunity, 2011, 35, 871-882.	6.6	1,698
43	Direct roles of the signaling kinase RSK2 in Cdc25C activation during <i>Xenopus</i> oocyte maturation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19885-19890.	3.3	21
44	Regulation of Cdc25C by ERK-MAP Kinases during the G2/M Transition. Cell, 2007, 128, 1119-1132.	13.5	120