Lin-Yan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2297828/publications.pdf

Version: 2024-02-01

394421 454955 33 945 19 30 citations h-index g-index papers 33 33 33 1017 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structural studies and molecular dynamic simulations of polyphenol oxidase treated by high pressure processing. Food Chemistry, 2022, 372, 131243.	8.2	22
2	Analysis of coloration characteristics of Tunisian soft-seed pomegranate arils based on transcriptome and metabolome. Food Chemistry, 2022, 370, 131270.	8.2	12
3	Release of clove essential oil loaded by mesoporous nanoâ€silica in polylactic acidâ€based food packaging on postharvest preservation of white button mushroom. International Journal of Food Science and Technology, 2022, 57, 457-465.	2.7	15
4	Chinese sumac (Rhus chinensis Mill.) fruits alleviate indomethacin-induced gastric ulcer in mice by improving oxidative stress, inflammation and apoptosis. Journal of Ethnopharmacology, 2022, 284, 114752.	4.1	16
5	Effect of high-pressure processing and thermal treatments on color and in vitro bioaccessibility of anthocyanin and antioxidants in cloudy pomegranate juice. Food Chemistry, 2022, 373, 131397.	8.2	22
6	Comparison of the Effects of High Pressure Processing, Pasteurization and High Temperature Short Time on the Physicochemical Attributes, Nutritional Quality, Aroma Profile and Sensory Characteristics of Passion Fruit Pur $\tilde{\mathbb{A}}$ ©e. Foods, 2022, 11 , 632 .	4.3	10
7	Evaluation of quality changes of differently formulated cloudy mixed juices during refrigerated storage after high pressure processing. Current Research in Food Science, 2021, 4, 627-635.	5.8	7
8	Gastroprotective effect and mechanisms of Chinese sumac fruits (<i>Rhus chinensis</i> Mill.) on ethanol-induced gastric ulcers in mice. Food and Function, 2021, 12, 12565-12579.	4.6	14
9	Osmotic pretreatment for instant controlled pressure drop dried apple chips: Impact of the type of saccharides and treatment conditions. Drying Technology, 2019, 37, 896-905.	3.1	12
10	Kinetic modelling of non-enzymatic browning and changes of physio-chemical parameters of peach juice during storage. Journal of Food Science and Technology, 2018, 55, 1003-1009.	2.8	18
11	Effect of different moisture equilibration process on the quality of apple chips dried by instant controlled pressure drop (dic)-assisted hot air drying. Journal of Food Processing and Preservation, 2018, 42, e13316.	2.0	13
12	Drying of Garlic Slices (<i>Allium Sativum</i> L.) and its Effect on Thiosulfinates, Total Phenolic Compounds and Antioxidant Activity During Infrared Drying. Journal of Food Processing and Preservation, 2017, 41, e12734.	2.0	39
13	Effect of sucrose concentration of osmotic dehydration pretreatment on drying characteristics and texture of peach chips dried by infrared drying coupled with explosion puffing drying. Drying Technology, 2017, 35, 1887-1896.	3.1	45
14	Change of the rheological properties of mango juice by high pressure homogenization. LWT - Food Science and Technology, 2017, 82, 121-130.	5. 2	90
15	Drying Kinetics and Quality Attributes of Peach Cylinders as Affected by Osmotic Pretreatments and Infrared Radiation Drying. International Journal of Food Engineering, 2017, 13, .	1.5	9
16	Research on the nonenzymatic browning reactions in model systems based on apple slices dried by instant controlled pressure drop drying. Drying Technology, 2017, 35, 1302-1311.	3.1	11
17	Hot air drying and freeze drying pre-treatments coupled to explosion puffing drying in terms of quality attributes of mango, pitaya, and papaya fruit chips. Journal of Food Processing and Preservation, 2017, 41, e13300.	2.0	44
18	Glass Transition and State Diagram for Jujube Powders With and Without Maltodextrin Addition. Food and Bioprocess Technology, 2017, 10, 1606-1614.	4.7	10

#	Article	IF	CITATIONS
19	Evaluation of browning ratio in an image analysis of apple slices at different stages of instant controlled pressure dropâ€assisted hotâ€air drying (<scp>ADâ€DIC</scp>). Journal of the Science of Food and Agriculture, 2017, 97, 2533-2540.	3.5	21
20	Effect of different drying technologies on drying characteristics and quality of red pepper (<i>Capsicum frutescens</i> L.): a comparative study. Journal of the Science of Food and Agriculture, 2016, 96, 3596-3603.	3.5	52
21	Degradation kinetics of total phenolic compounds, capsaicinoids and antioxidant activity in red pepper during hot air and infrared drying process. International Journal of Food Science and Technology, 2016, 51, 842-853.	2.7	56
22	Infrared Radiation and Microwave Vacuum Combined Drying Kinetics and Quality of Raspberry. Journal of Food Process Engineering, 2016, 39, 377-390.	2.9	26
23	Comparison of different drying methods on the physical properties, bioactive compounds and antioxidant activity of raspberry powders. Journal of the Science of Food and Agriculture, 2016, 96, 2055-2062.	3.5	72
24	Change of microbial and quality attributes of mango juice treated by high pressure homogenization combined with moderate inlet temperatures during storage. Innovative Food Science and Emerging Technologies, 2016, 36, 320-329.	5.6	59
25	Role of peach proteins in juice precipitation induced by high pressure CO2. Food Chemistry, 2016, 209, 81-89.	8.2	8
26	Impacts of Pre-Drying Methods on Physicochemical Characteristics, Color, Texture, Volume Ratio, Microstructure and Rehydration of Explosion Puffing Dried Pear Chips. Journal of Food Processing and Preservation, 2016, 40, 863-873.	2.0	30
27	Influence of pre-drying treatments on physicochemical and organoleptic properties of explosion puff dried jackfruit chips. Journal of Food Science and Technology, 2016, 53, 1120-1129.	2.8	36
28	Influence of number of puffing times on physicochemical, color, texture, and microstructure of explosion puffing dried apple chips. Drying Technology, 2016, 34, 773-782.	3.1	40
29	Quality evaluation of yellow peach chips prepared by explosion puffing drying. Journal of Food Science and Technology, 2015, 52, 8204-8211.	2.8	26
30	Degradation of ochratoxin A in aqueous solutions by electron beam irradiation. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306, 39-46.	1.5	21
31	Effects of High-Pressure CO ₂ Processing on Flavor, Texture, and Color of Foods. Critical Reviews in Food Science and Nutrition, 2015, 55, 750-768.	10.3	28
32	A comparative study of inactivation of peach polyphenol oxidase and carrot polyphenol oxidase induced by highâ€pressure carbon dioxide. International Journal of Food Science and Technology, 2010, 45, 2297-2305.	2.7	22
33	Alterations in the Activity and Structure of Pectin Methylesterase Treated by High Pressure Carbon Dioxide. Journal of Agricultural and Food Chemistry, 2009, 57, 1890-1895.	5.2	39