
## Minggao Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/229743/publications.pdf Version: 2024-02-01



Μινέςλο Υμ

| #  | Article                                                                                                                                                                             | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Combined effects of obstacle position and equivalence ratio on overpressure of premixed<br>hydrogen–air explosion. International Journal of Hydrogen Energy, 2016, 41, 17740-17749. | 7.1 | 83        |
| 2  | Experimental study on premixed flame propagation of hydrogen/methane/air deflagration in closed ducts. International Journal of Hydrogen Energy, 2017, 42, 5426-5438.               | 7.1 | 69        |
| 3  | Experimental study of premixed syngas/air flame deflagration in a closed duct. International Journal of Hydrogen Energy, 2018, 43, 13676-13686.                                     | 7.1 | 65        |
| 4  | Gas explosion flame propagation over various hollow-square obstacles. Journal of Natural Gas<br>Science and Engineering, 2016, 30, 221-227.                                         | 4.4 | 64        |
| 5  | Experimental study of premixed syngas/air flame propagation in a half-open duct. Fuel, 2018, 225, 192-202.                                                                          | 6.4 | 58        |
| 6  | Porous media quenching behaviors of gas deflagration in the presence of obstacles. Experimental<br>Thermal and Fluid Science, 2013, 50, 37-44.                                      | 2.7 | 57        |
| 7  | An experimental investigation into the behavior of premixed flames of hydrogen/carbon monoxide/air<br>mixtures in a half-open duct. Fuel, 2019, 237, 619-629.                       | 6.4 | 56        |
| 8  | Scale effects on premixed flame propagation of hydrogen/methane deflagration. International Journal of Hydrogen Energy, 2015, 40, 13121-13133.                                      | 7.1 | 55        |
| 9  | Experimental study on explosion characteristics of syngas with different ignition positions and hydrogen fraction. International Journal of Hydrogen Energy, 2019, 44, 15553-15564. | 7.1 | 55        |
| 10 | Effects of hydrogen addition on propagation characteristics of premixed methane/air flames. Journal of Loss Prevention in the Process Industries, 2015, 34, 1-9.                    | 3.3 | 52        |
| 11 | Comparative study of the propagation of methane/air and hydrogen/air flames in a duct using large eddy simulation. Chemical Engineering Research and Design, 2018, 120, 45-56.      | 5.6 | 52        |
| 12 | A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts. Energy, 2019, 178, 436-446.                                | 8.8 | 52        |
| 13 | Influence on the methane/air explosion characteristics of the side venting position in a pipeline.<br>Chemical Engineering Research and Design, 2017, 111, 292-299.                 | 5.6 | 51        |
| 14 | Effect of bedding structural diversity of coal on permeability evolution and gas disasters control with coal mining. Natural Hazards, 2014, 73, 531-546.                            | 3.4 | 49        |
| 15 | Large eddy simulation of premixed hydrogen/methane/air flame propagation in a closed duct.<br>International Journal of Hydrogen Energy, 2018, 43, 3871-3884.                        | 7.1 | 48        |
| 16 | An experimental study on premixed syngas/air flame propagating across an obstacle in closed duct.<br>Fuel, 2020, 267, 117200.                                                       | 6.4 | 48        |
| 17 | Effects of cross-wise obstacle position on methane–air deflagration characteristics. Journal of Loss<br>Prevention in the Process Industries, 2013, 26, 1335-1340.                  | 3.3 | 45        |
| 18 | Preventing the propagation of gas explosion in ducts using spurted nitrogen. Chemical Engineering<br>Research and Design, 2019, 123, 11-23.                                         | 5.6 | 44        |

Μινςgao Yu

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Large eddy simulation of methane–air deflagration in an obstructed chamber using different<br>combustion models. Journal of Loss Prevention in the Process Industries, 2012, 25, 730-738. | 3.3 | 41        |
| 20 | Synergistic inhibition effect on methane/air explosions by N2-twin-fluid water mist containing sodium chloride additive. Fuel, 2019, 253, 361-368.                                        | 6.4 | 40        |
| 21 | Effect of side venting areas on the methane/air explosion characteristics in a pipeline. Journal of Loss<br>Prevention in the Process Industries, 2018, 54, 123-130.                      | 3.3 | 37        |
| 22 | Effects of obstacle position and hydrogen volume fraction on premixed syngas-air flame acceleration.<br>International Journal of Hydrogen Energy, 2020, 45, 29518-29532.                  | 7.1 | 37        |
| 23 | Influence of obstacle blockage on methane/air explosion characteristics affected by side venting in a duct. Journal of Loss Prevention in the Process Industries, 2018, 54, 281-288.      | 3.3 | 36        |
| 24 | Study on the propagation characteristics of hydrogen/methane/air premixed flames in variable cross-section ducts. Chemical Engineering Research and Design, 2020, 135, 135-143.           | 5.6 | 36        |
| 25 | Effect of N2 and CO2 on explosion behavior of syngas/air mixtures in a closed duct. International<br>Journal of Hydrogen Energy, 2019, 44, 28044-28055.                                   | 7.1 | 35        |
| 26 | Suppression of CO2 and H2O on the cellular instability of premixed methane/air flame. Fuel, 2020, 264, 116862.                                                                            | 6.4 | 35        |
| 27 | Acoustic emission monitoring technology for coal and gas outburst. Energy Science and Engineering, 2019, 7, 443-456.                                                                      | 4.0 | 34        |
| 28 | Influence of side venting position on methane/air explosion characteristics in an end-vented duct containing an obstacle. Experimental Thermal and Fluid Science, 2018, 92, 202-210.      | 2.7 | 33        |
| 29 | Study on explosion characteristics of premixed hydrogen/biogas/air mixture in a duct. International<br>Journal of Hydrogen Energy, 2019, 44, 27159-27173.                                 | 7.1 | 33        |
| 30 | Suppressing methane explosion overpressure using a charged water mist containing a NaCl additive.<br>Journal of Natural Gas Science and Engineering, 2016, 29, 21-29.                     | 4.4 | 32        |
| 31 | Effects of hydrogen addition on methane-air deflagration in obstructed chamber. Experimental<br>Thermal and Fluid Science, 2017, 80, 270-280.                                             | 2.7 | 32        |
| 32 | Experimental Investigation on the Permeability Evolution of Compacted Broken Coal. Transport in Porous Media, 2017, 116, 847-868.                                                         | 2.6 | 30        |
| 33 | Effect of side vent size on a methane/air explosion in an end-vented duct containing an obstacle.<br>Experimental Thermal and Fluid Science, 2019, 101, 141-150.                          | 2.7 | 28        |
| 34 | Evolution of Broken Coal Permeability Under the Condition of Stress, Temperature, Moisture<br>Content, and Pore Pressure. Rock Mechanics and Rock Engineering, 2019, 52, 2803-2814.       | 5.4 | 27        |
| 35 | Suppression of methane/air explosion in pipeline by water mist. Journal of Loss Prevention in the<br>Process Industries, 2017, 49, 791-796.                                               | 3.3 | 24        |
| 36 | The influence of the charge-to-mass ratio of the charged water mist on a methane explosion. Journal of Loss Prevention in the Process Industries, 2016, 41, 68-76.                        | 3.3 | 23        |

Minggao Yu

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Experimental investigation on the effect of obstacle position on the explosion behaviors of the non-uniform methane/air mixture. Fuel, 2022, 320, 123989.                                                             | 6.4 | 22        |
| 38 | Effect of equivalence ratio and ignition location on premixed syngas-air explosion in a half-open duct.<br>Fuel, 2021, 288, 119724.                                                                                   | 6.4 | 21        |
| 39 | Explosion behavior of non-uniform methane/air mixture in an obstructed duct with different blockage ratios. Energy, 2022, 255, 124603.                                                                                | 8.8 | 21        |
| 40 | On the propagation dynamics of lean H2/CO/air premixed flame. International Journal of Hydrogen<br>Energy, 2020, 45, 7210-7222.                                                                                       | 7.1 | 19        |
| 41 | Evolution Characteristics of Bulking Factor in the Multi-field Loading of Broken Coal: An<br>Experimental Study. Rock Mechanics and Rock Engineering, 2021, 54, 1481-1499.                                            | 5.4 | 17        |
| 42 | Effect of hydrogen enrichment on the laminar burning characteristics of dimethyl-ether/methane<br>fuel: Experimental and modeling study. Fuel, 2021, 305, 121475.                                                     | 6.4 | 16        |
| 43 | Effect of Variable Cross-section Duct on Flame Propagation Characteristics of Premixed<br>hydrogen/methane/air Combustible Gas. Combustion Science and Technology, 2021, 193, 1425-1443.                              | 2.3 | 15        |
| 44 | Monitoring NOx Emissions from Coal Fired Boilers Using Generalized Regression Neural Network. ,<br>2008, , .                                                                                                          |     | 14        |
| 45 | Experimental study on the premixed syngas-air explosion in duct with both ends open. International<br>Journal of Hydrogen Energy, 2021, 46, 11004-11014.                                                              | 7.1 | 14        |
| 46 | Experimental and numerical study on the explosion suppression of hydrogen/dimethyl ether/methane/air mixtures by water mist containing NaHCO3. Fuel, 2022, 328, 125235.                                               | 6.4 | 13        |
| 47 | Flame propagation mode transition of premixed syngas-air mixtures in a closed duct. Fuel, 2022, 318, 123649.                                                                                                          | 6.4 | 12        |
| 48 | Application of large eddy simulation in methane-air explosion prediction using thickening flame approach. Chemical Engineering Research and Design, 2022, 159, 662-673.                                               | 5.6 | 11        |
| 49 | Effect of temperature on the evolution and distribution for particle size of loose broken coal during the uniaxial confined compression process. Fuel, 2022, 318, 123592.                                             | 6.4 | 11        |
| 50 | Experimental study on suppression of methane explosion by porous media and ultra-fine water mist.<br>Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 1751-1764.                    | 2.3 | 10        |
| 51 | An experimental study on the oscillation of the propagating syngas-air flame in a duct. International<br>Journal of Hydrogen Energy, 2021, 46, 22234-22243.                                                           | 7.1 | 10        |
| 52 | The Characteristics of Methane Combustion Suppression by Water Mist and Its Engineering Applications. Energies, 2017, 10, 1566.                                                                                       | 3.1 | 9         |
| 53 | Experimental Study on the Effect of Chemical Composite Additives on Heat Release Characteristics of<br>Coal Oxidation Spontaneous Combustion. Combustion Science and Technology, 2021, 193, 561-576.                  | 2.3 | 8         |
| 54 | Effects of equivalence ratio and fuel composition on the explosion characteristics of syngas/air<br>mixtures at sub-atmospheric pressures. Journal of Loss Prevention in the Process Industries, 2022, 78,<br>104819. | 3.3 | 7         |

Μινςgao Yu

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synergistic inhibition effect on the self-acceleration characteristics in the initial stage of methane/air explosion by CO <sub>2</sub> and ultrafine water mist. RSC Advances, 2019, 9, 13940-13948.    | 3.6 | 6         |
| 56 | Characteristics for Oxygen-Lean Combustion and Residual Thermodynamics in Coalfield-Fire Zones within Axial Pressure. ACS Omega, 2020, 5, 22502-22512.                                                   | 3.5 | 6         |
| 57 | Support Vector Regression and Ant Colony Optimization for Combustion Performance of Boilers. , 2008, , .                                                                                                 |     | 5         |
| 58 | Improved Prediction of Nitrogen Oxides Using GRNN with K-Means Clustering and EDA. , 2008, , .                                                                                                           |     | 5         |
| 59 | Spurting NH <sub>4</sub> H <sub>2</sub> PO <sub>4</sub> Powder to Prevent the Propagation of Gas Explosion along the Duct. Combustion Science and Technology, 2021, 193, 2534-2552.                      | 2.3 | 5         |
| 60 | Flame propagation inhibition study on methane/air explosion using CO2 twin-fluid water mist containing potassium salt additives. Journal of Loss Prevention in the Process Industries, 2022, 78, 104817. | 3.3 | 5         |
| 61 | Use of differential evolution in low NO <inf>x</inf> combustion optimization of a coal-fired boiler. , 2010, , .                                                                                         |     | 3         |
| 62 | Research on the Deformation Characteristics and Support Technology of a Bottom Gas Extraction Roadway under Repeated Interference. Advances in Civil Engineering, 2019, 2019, 1-14.                      | 0.7 | 3         |
| 63 | An Investigation on the Bursting Liability of Oxidized Coal and the Coupling Mechanism of Rock Burst<br>and Spontaneous Combustion. Rock Mechanics and Rock Engineering, 2022, 55, 317-340.              | 5.4 | 3         |
| 64 | Numerical investigation on the effects of reaction orders on the flame propagation dynamic behaviors for premixed gas in a closed tube. International Journal of Hydrogen Energy, 2022, 47, 8037-8047.   | 7.1 | 3         |
| 65 | Coal pillar's breaking and fracture development mechanism and numerical simulation. Thermal<br>Science, 2022, 26, 2439-2446.                                                                             | 1.1 | 3         |
| 66 | Prediction of Explosion Limits of Multi-Component Gas Mixture Using LS-SVR. , 2010, , .                                                                                                                  |     | 2         |
| 67 | Prediction of nitrogen oxides from coal combustion by using response surface methodology. , 2012, , .                                                                                                    |     | 2         |
| 68 | Reducing NO <inf>x</inf> emission from a coal-fired boiler based on regression and optimization. , 2010, , .                                                                                             |     | 1         |
| 69 | Estimation of explosion limits of gas mixture using a single spread GRNN. , 2011, , .                                                                                                                    |     | 1         |
| 70 | Optimization of NO <inf>x</inf> emission from coal combustion process using pattern search. , 2011, , .                                                                                                  |     | 0         |