
Pavel Matula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2297314/publications.pdf Version: 2024-02-01

<u> Ρανγει Ματιια</u>

#	Article	IF	CITATIONS
1	The Effect of Uncoated SPIONs on hiPSC-Differentiated Endothelial Cells. International Journal of Molecular Sciences, 2019, 20, 3536.	4.1	2
2	Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images. Scientific Reports, 2019, 9, 13211.	3.3	32
3	TEM ExosomeAnalyzer: a computerâ€assisted software tool for quantitative evaluation of extracellular vesicles in transmission electron microscopy images. Journal of Extracellular Vesicles, 2019, 8, 1560808.	12.2	36
4	Reprogramming of Adult Peripheral Blood Cells into Human Induced Pluripotent Stem Cells as a Safe and Accessible Source of Endothelial Cells. Stem Cells and Development, 2018, 27, 10-22.	2.1	14
5	Non-Rigid Contour-Based Registration of Cell Nuclei in 2-D Live Cell Microscopy Images Using a Dynamic Elasticity Model. IEEE Transactions on Medical Imaging, 2018, 37, 173-184.	8.9	21
6	DNA double-strand breaks in human induced pluripotent stem cell reprogramming and long-term in vitro culturing. Stem Cell Research and Therapy, 2017, 8, 73.	5.5	31
7	An objective comparison of cell-tracking algorithms. Nature Methods, 2017, 14, 1141-1152.	19.0	399
8	Particle Tracking Accuracy Measurement Based on Comparison of Linear Oriented Forests. , 2017, , .		0
9	Automatic Detection and Segmentation of Exosomes in Transmission Electron Microscopy. Lecture Notes in Computer Science, 2016, , 318-325.	1.3	3
10	Performance and sensitivity evaluation of 3D spot detection methods in confocal microscopy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 759-772.	1.5	15
11	Cell Tracking Accuracy Measurement Based on Comparison of Acyclic Oriented Graphs. PLoS ONE, 2015, 10, e0144959.	2.5	68
12	Localized movement and morphology of UBF1-positive nucleolar regions are changed by Î ³ -irradiation in G2 phase of the cell cycle. Nucleus, 2015, 6, 301-313.	2.2	9
13	A benchmark for comparison of cell tracking algorithms. Bioinformatics, 2014, 30, 1609-1617.	4.1	345
14	Non-rigid contour-based temporal registration of 2D cell nuclei images using the Navier equation. , 2014, , .		7
15	HP1β-dependent recruitment of UBF1 to irradiated chromatin occurs simultaneously with CPDs. Epigenetics and Chromatin, 2014, 7, 39.	3.9	18
16	A simple Fourier filter for suppression of the missing wedge ray artefacts in single-axis electron tomographic reconstructions. Journal of Structural Biology, 2014, 186, 141-152.	2.8	17
17	Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: PART A-Radiomics. Critical Reviews in Eukaryotic Gene Expression, 2014, 24, 205-223.	0.9	26
18	Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part - Structuromics. Critical Reviews in Eukaryotic Gene Expression, 2014, 24, 225-247.	0.9	26

Pavel Matula

#	Article	IF	CITATIONS
19	Hybrid Detectors Improved Time-Lapse Confocal Microscopy of PML and 53BP1 Nuclear Body Colocalization in DNA Lesions. Microscopy and Microanalysis, 2013, 19, 360-369.	0.4	24
20	Arrangement of nuclear structures is not transmitted through mitosis but is identical in sister cells. Journal of Cellular Biochemistry, 2012, 113, 3313-3329.	2.6	10
21	Smooth Chan–Vese segmentation via graph cuts. Pattern Recognition Letters, 2012, 33, 1405-1410.	4.2	14
22	Trajectories and nuclear arrangement of PML bodies are influenced by Aâ€ŧype lamin deficiency. Biology of the Cell, 2012, 104, 418-432.	2.0	29
23	Acetylationâ€dependent nuclear arrangement and recruitment of BMI1 protein to UVâ€damaged chromatin. Journal of Cellular Physiology, 2012, 227, 1838-1850.	4.1	48
24	Endonuclease G interacts with histone H2B and DNA topoisomerase II alpha during apoptosis. Molecular and Cellular Biochemistry, 2012, 363, 301-307.	3.1	20
25	Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures associated with heterochromatin. Epigenetics and Chromatin, 2011, 4, 5.	3.9	22
26	Human Embryonic Stem Cells Suffer from Centrosomal Amplification. Stem Cells, 2011, 29, 46-56.	3.2	39
27	SUV39h-independent association of HP1β with fibrillarin-positive nucleolar regions. Chromosoma, 2010, 119, 227-241.	2.2	33
28	SUV39h―and Aâ€ŧype laminâ€dependent telomere nuclear rearrangement. Journal of Cellular Biochemistry, 2010, 109, 915-926.	2.6	20
29	The role of chromatin condensation during granulopoiesis in the regulation of gene cluster expression. Epigenetics, 2010, 5, 758-766.	2.7	5
30	Chromocentre integrity and epigenetic marks. Journal of Structural Biology, 2010, 169, 124-133.	2.8	16
31	A Fast Level Set-Like Algorithm for Region-Based Active Contours. Lecture Notes in Computer Science, 2010, , 387-396.	1.3	6
32	Acquiarium: Free software for the acquisition and analysis of 3D images of cells in fluorescence microscopy. , 2009, , .		13
33	Segmentation of Touching Cell Nuclei Using a Two-Stage Graph Cut Model. Lecture Notes in Computer Science, 2009, , 410-419.	1.3	26
34	Prediction of localization and interactions of apoptotic proteins. Journal of Biomedical Science, 2009, 16, 59.	7.0	10
35	A Fast Level Set-Like Algorithm with Topology Preserving Constraint. Lecture Notes in Computer Science, 2009, , 930-938.	1.3	1
36	Improved 3D Reconstruction of Interphase Chromosomes Based on Nonlinear Diffusion Filtering. Mathematics and Visualization, 2007, , 163-172.	0.6	0

Pavel Matula

#	Article	IF	CITATIONS
37	Fast point-based 3-D alignment of live cells. IEEE Transactions on Image Processing, 2006, 15, 2388-2396.	9.8	29
38	Directional motion of foreign plasmid DNA to nuclear HP1 foci. Chromosome Research, 2006, 14, 505-514.	2.2	7
39	Automated acquisition and processing of multidimensional image data in confocal in vivo microscopy. Microscopy Research and Technique, 2004, 64, 164-175.	2.2	26
40	Applications of Image Registration in Human Genome Research. Lecture Notes in Computer Science, 2004, , 376-384.	1.3	2
41	Fast Marching 3D Reconstruction of Interphase Chromosomes. Lecture Notes in Computer Science, 2004, , 385-394.	1.3	3
42	Tissue Reconstruction Based on Deformation of Dual Simplex Meshes. Lecture Notes in Computer Science, 2003, , 514-523.	1.3	1
43	Spherical Object Reconstruction Using Star-Shaped Simplex Meshes. Lecture Notes in Computer Science, 2001, , 608-620.	1.3	7