Indarchand Gupta

List of Publications by Citations

Source: https://exaly.com/author-pdf/229731/indarchand-gupta-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,130 17 32 33 h-index g-index citations papers 1,302 5.1 33 4.34 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
32	Silver nanoparticles: therapeutical uses, toxicity, and safety issues. <i>Journal of Pharmaceutical Sciences</i> , 2014 , 103, 1931-1944	3.9	294
31	Metal nanoparticles: The protective nanoshield against virus infection. <i>Critical Reviews in Microbiology</i> , 2016 , 42, 46-56	7.8	161
30	Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 8083-97	5.7	130
29	Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. <i>International Journal of Pharmaceutics</i> , 2015 , 496, 159-72	6.5	85
28	Copper and copper nanoparticles: role in management of insect-pests and pathogenic microbes. <i>Nanotechnology Reviews</i> , 2018 , 7, 303-315	6.3	60
27	Recent advances in use of silver nanoparticles as antimalarial agents. <i>International Journal of Pharmaceutics</i> , 2017 , 526, 254-270	6.5	59
26	Smart nanopackaging for the enhancement of food shelf life. <i>Environmental Chemistry Letters</i> , 2019 , 17, 277-290	13.3	54
25	Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance. <i>International Journal of Pharmaceutics</i> , 2017 , 532, 139-148	6.5	39
24	Potential Role of Biological Systems in Formation of Nanoparticles: Mechanism of Synthesis and Biomedical Applications. <i>Current Nanoscience</i> , 2013 , 9, 576-587	1.4	32
23	Nanosilver: an inorganic nanoparticle with myriad potential applications. <i>Nanotechnology Reviews</i> , 2014 , 3,	6.3	31
22	Green synthesis of silver nanoparticles using white sugar. IET Nanobiotechnology, 2013 , 7, 28-32	2	31
21	Nanotechnology based anti-infectives to fight microbial intrusions. <i>Journal of Applied Microbiology</i> , 2016 , 120, 527-42	4.7	31
20	Fungus-mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis. <i>IEEE Transactions on Nanobioscience</i> , 2014 , 13, 397-402	3.4	26
19	Mycoendophytes as efficient synthesizers of bionanoparticles: nanoantimicrobials, mechanism, and cytotoxicity. <i>Critical Reviews in Biotechnology</i> , 2017 , 37, 765-778	9.4	19
18	Toxicity of fungal-generated silver nanoparticles to soil-inhabiting Pseudomonas putida KT2440, a rhizospheric bacterium responsible for plant protection and bioremediation. <i>Journal of Hazardous Materials</i> , 2015 , 286, 48-54	12.8	18
17	Nano-Silver Toxicity: Emerging Concerns and Consequences in Human Health 2012 , 525-548		18
16	Nanotechnology-based promising strategies for the management of COVID-19: current development and constraints. <i>Expert Review of Anti-Infective Therapy</i> , 2020 , 1-10	5.5	17

LIST OF PUBLICATIONS

15	Cyto-, Geno-, and Ecotoxicity of Copper Nanoparticles. <i>Nanomedicine and Nanotoxicology</i> , 2014 , 325-34	50.3	7
14	Copper in Medicine: Perspectives and Toxicity 2018 , 95-112		6
13	Diversity of Microbes in Synthesis of Metal Nanoparticles 2015 , 1-30		2
12	Nanotherapy: a next generation hallmark for combating cancer 2017 , 811-830		2
11	Nanoformulations for Wound Infections 2017 , 223-246		2
10	Carbon-Based Nanocatalysts in Biodiesel Production 2021 , 157-181		2
9	Bio-distribution and Toxicity of Noble Metal Nanoparticles in Humans 2017 , 469-482		1
8	Nanotoxicity: A Mechanistic Approach 2015 , 393-410		1
7	Effects of Different Metal Oxide Nanoparticles on Plant Growth 2021 , 259-282		1
6	Recent Advances in the Production of Biodiesel Using Lignocellulosic Biomass 2020 , 69-85		1
5	Role of Metal-Based Nanoparticles in Plant Protection 2021 , 220-238		О
4	Nanotechnology for Combating Microbial Contamination of Water 2020 , 42-62	0.1	
3	Toxicological Concerns of Nanomaterials Used in Biomedical Applications 2020 , 375-398		
2	Evolving nanotechnological trends in the management of mycotic keratitis. <i>IET Nanobiotechnology</i> , 2019 , 13, 464-470	2	
1	Nanotechnology for Biofuels: Progress and Pitfalls. <i>Nanotechnology in the Life Sciences</i> , 2021 , 161-174	1.1	