David Kleinfeld

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2297306/david-kleinfeld-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 160
 13,151
 63
 113

 papers
 citations
 h-index
 g-index

 179
 15,798
 9
 6.52

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
160	Contribution of animal models toward understanding resting state functional connectivity. <i>NeuroImage</i> , 2021 , 245, 118630	7.9	6
159	The Global Configuration of Visual Stimuli Alters Co-Fluctuations of Cross-Hemispheric Human Brain Activity. <i>Journal of Neuroscience</i> , 2021 , 41, 9756-9766	6.6	0
158	Endothelial struts enable the generation of large lumenized blood vessels de novo. <i>Nature Cell Biology</i> , 2021 , 23, 322-329	23.4	2
157	Mathematical synthesis of the cortical circulation for the whole mouse brain-part II: Microcirculatory closure. <i>Microcirculation</i> , 2021 , 28, e12687	2.9	2
156	Constructing an adult orofacial premotor atlas in Allen mouse CCF. ELife, 2021, 10,	8.9	2
155	Brain microvasculature has a common topology with local differences in geometry that match metabolic load. <i>Neuron</i> , 2021 , 109, 1168-1187.e13	13.9	20
154	Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. <i>Neuron</i> , 2021 , 109, 1721-1738.e4	13.9	14
153	Abortive intussusceptive angiogenesis causes multi-cavernous vascular malformations. <i>ELife</i> , 2021 , 10,	8.9	2
152	A Suite of Neurophotonic Tools to Underpin the Contribution of Internal Brain States in fMRI. <i>Current Opinion in Biomedical Engineering</i> , 2021 , 18, 100273-100273	4.4	O
151	Voxelized simulation of cerebral oxygen perfusion elucidates hypoxia in aged mouse cortex. <i>PLoS Computational Biology</i> , 2021 , 17, e1008584	5	4
150	Reinforcement learning links spontaneous cortical dopamine impulses to reward. <i>Current Biology</i> , 2021 , 31, 4111-4119.e4	6.3	2
149	Assessment of single-vessel cerebral blood velocity by phase contrast fMRI. <i>PLoS Biology</i> , 2021 , 19, e30	09 9 23	2
148	Reversibly Modulating the Blood-Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles. <i>Nano Letters</i> , 2021 , 21, 9805-9815	11.5	7
147	Cerebrospinal fluid influx drives acute ischemic tissue swelling. <i>Science</i> , 2020 , 367,	33.3	150
146	Ultra-slow Oscillations in fMRI and Resting-State Connectivity: Neuronal and Vascular Contributions and Technical Confounds. <i>Neuron</i> , 2020 , 107, 782-804	13.9	32
145	Can One Concurrently Record Electrical Spikes from Every Neuron in a Mammalian Brain?. <i>Neuron</i> , 2019 , 103, 1005-1015	13.9	22
144	Direct wavefront sensing enables functional imaging of infragranular axons and spines. <i>Nature Methods</i> , 2019 , 16, 615-618	21.6	38

(2016-2019)

143	Brain Capillary Networks Across Species: A few Simple Organizational Requirements Are Sufficient to Reproduce Both Structure and Function. <i>Frontiers in Physiology</i> , 2019 , 10, 233	4.6	29
142	An active texture-based digital atlas enables automated mapping of structures and markers across brains. <i>Nature Methods</i> , 2019 , 16, 341-350	21.6	14
141	Orofacial Movements Involve Parallel Corticobulbar Projections from Motor Cortex to Trigeminal Premotor Nuclei. <i>Neuron</i> , 2019 , 104, 765-780.e3	13.9	8
140	Targeted Occlusion to Surface and Deep Vessels in Neocortex Via Linear and Nonlinear Optical Absorption. <i>Springer Series in Translational Stroke Research</i> , 2019 , 145-162	0.1	
139	CNIFERS: CELL-BASED BIOSENSORS WITH NANOMOLAR SENSITIVITY TO IN VIVO CHANGES IN NEUROMODULATION 2019 , 19-32		
138	Awake Mouse Imaging: From Two-Photon Microscopy to Blood Oxygen Level-Dependent Functional Magnetic Resonance Imaging. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2019 , 4, 533-542	3.4	27
137	Functional brain stem circuits for control of nose motion. <i>Journal of Neurophysiology</i> , 2019 , 121, 205-21	73.2	8
136	Ultra-Slow Single-Vessel BOLD and CBV-Based fMRI Spatiotemporal Dynamics and Their Correlation with Neuronal Intracellular Calcium Signals. <i>Neuron</i> , 2018 , 97, 925-939.e5	13.9	66
135	Circuits in the rodent brainstem that control whisking in concert with other orofacial motor actions. <i>Neuroscience</i> , 2018 , 368, 152-170	3.9	29
134	Simulations of blood as a suspension predicts a depth dependent hematocrit in the circulation throughout the cerebral cortex. <i>PLoS Computational Biology</i> , 2018 , 14, e1006549	5	18
133	Comparing two classes of biological distribution systems using network analysis. <i>PLoS Computational Biology</i> , 2018 , 14, e1006428	5	11
132	Coordination of Orofacial Motor Actions into Exploratory Behavior by Rat. <i>Current Biology</i> , 2017 , 27, 688-696	6.3	51
131	Entrainment of Arteriole Vasomotor Fluctuations by Neural Activity Is a Basis of Blood-Oxygenation-Level-Dependent "Resting-State" Connectivity. <i>Neuron</i> , 2017 , 96, 936-948.e3	13.9	156
130	The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI. <i>NeuroImage</i> , 2017 , 163, 13-23	7.9	29
129	Parallel Inhibitory and Excitatory Trigemino-Facial Feedback Circuitry for Reflexive Vibrissa Movement. <i>Neuron</i> , 2017 , 95, 673-682.e4	13.9	16
128	The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2017 , 37, 52-68	7.3	124
127	Depth-dependent flow and pressure characteristics in cortical microvascular networks. <i>PLoS Computational Biology</i> , 2017 , 13, e1005392	5	60
126	Precision mapping of the vibrissa representation within murine primary somatosensory cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371,	5.8	18

125	The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2016 , 371,	5.8	31
124	Analysis of Neuronal Spike Trains, Deconstructed. <i>Neuron</i> , 2016 , 91, 221-59	13.9	49
123	Construction of Cell-based Neurotransmitter Fluorescent Engineered Reporters (CNiFERs) for Optical Detection of Neurotransmitters In Vivo. <i>Journal of Visualized Experiments</i> , 2016 ,	1.6	7
122	Whisking, Sniffing, and the Hippocampal ERhythm: A Tale of Two Oscillators. <i>PLoS Biology</i> , 2016 , 14, e1002385	9.7	27
121	Circuits in the Ventral Medulla That Phase-Lock Motoneurons for Coordinated Sniffing and Whisking. <i>Neural Plasticity</i> , 2016 , 2016, 7493048	3.3	12
120	Neurovascular and Immuno-Imaging: From Mechanisms to Therapies. Proceedings of the Inaugural Symposium. <i>Frontiers in Neuroscience</i> , 2016 , 10, 46	5.1	2
119	Cell type specificity of neurovascular coupling in cerebral cortex. <i>ELife</i> , 2016 , 5,	8.9	126
118	Inhibition, Not Excitation, Drives Rhythmic Whisking. <i>Neuron</i> , 2016 , 90, 374-87	13.9	42
117	Roger Tsien 1952-2016. <i>Nature Neuroscience</i> , 2016 , 19, 1269-70	25.5	1
116	Juxtacellular Monitoring and Localization of Single Neurons within Sub-cortical Brain Structures of Alert, Head-restrained Rats. <i>Journal of Visualized Experiments</i> , 2015 ,	1.6	5
115	Ultra-large field-of-view two-photon microscopy. <i>Optics Express</i> , 2015 , 23, 13833-47	3.3	73
114	Deflection of a vibrissa leads to a gradient of strain across mechanoreceptors in a mystacial follicle. <i>Journal of Neurophysiology</i> , 2015 , 114, 138-45	3.2	16
113	Muscles involved in naris dilation and nose motion in rat. <i>Anatomical Record</i> , 2015 , 298, 546-53	2.1	14
112	Robust and fragile aspects of cortical blood flow in relation to the underlying angioarchitecture. <i>Microcirculation</i> , 2015 , 22, 204-218	2.9	62
111	Fluorescently labeled peptide increases identification of degenerated facial nerve branches during surgery and improves functional outcome. <i>PLoS ONE</i> , 2015 , 10, e0119600	3.7	21
110	Vibrissa Self-Motion and Touch Are Reliably Encoded along the Same Somatosensory Pathway from Brainstem through Thalamus. <i>PLoS Biology</i> , 2015 , 13, e1002253	9.7	69
109	Feedback in the brainstem: an excitatory disynaptic pathway for control of whisking. <i>Journal of Comparative Neurology</i> , 2015 , 523, 921-42	3.4	14
108	The Musculature That Drives Active Touch by Vibrissae and Nose in Mice. <i>Anatomical Record</i> , 2015 , 298, 1347-58	2.1	19

107	The Central Pattern Generator for Rhythmic Whisking 2015 , 149-165		3
106	More than a rhythm of life: breathing as a binder of orofacial sensation. <i>Nature Neuroscience</i> , 2014 , 17, 647-51	25.5	71
105	Cell-based reporters reveal in vivo dynamics of dopamine and norepinephrine release in murine cortex. <i>Nature Methods</i> , 2014 , 11, 1245-52	21.6	100
104	How the brainstem controls orofacial behaviors comprised of rhythmic actions. <i>Trends in Neurosciences</i> , 2014 , 37, 370-80	13.3	99
103	Spectral methods for functional brain imaging. Cold Spring Harbor Protocols, 2014, 2014, 248-62	1.2	7
102	Activation and measurement of free whisking in the lightly anesthetized rodent. <i>Nature Protocols</i> , 2014 , 9, 1792-802	18.8	7
101	Imaging Vasodynamics in the Awake Mouse Brain with Two-Photon Microscopy. <i>Neuromethods</i> , 2014 , 55-73	0.4	4
100	Two-Photon Microscopy to Measure Blood Flow and Concurrent Brain Cell Activity. <i>Neuromethods</i> , 2014 , 273-290	0.4	1
99	The Brainstem Oscillator for Whisking and the Case for Breathing as the Master Clock for Orofacial Motor Actions. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2014 , 79, 29-39	3.9	17
98	ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. <i>Nature Neuroscience</i> , 2013 , 16, 1499-508	25.5	544
97	The challenge of connecting the dots in the B.R.A.I.N. <i>Neuron</i> , 2013 , 80, 270-4	13.9	60
96	The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. <i>Nature Neuroscience</i> , 2013 , 16, 55-63	25.5	221
95	Hierarchy of orofacial rhythms revealed through whisking and breathing. <i>Nature</i> , 2013 , 497, 205-10	50.4	210
94	The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. <i>Nature Neuroscience</i> , 2013 , 16, 889-97	25.5	340
93	All-optical osteotomy to create windows for transcranial imaging in mice. Optics Express, 2013, 21, 2316	50 5 .8j	9
92	Two-photon imaging of blood flow in the rat cortex. <i>Cold Spring Harbor Protocols</i> , 2013 , 2013, 759-67	1.2	12
91	Optically induced occlusion of single blood vessels in rodent neocortex. <i>Cold Spring Harbor Protocols</i> , 2013 , 2013, 1153-60	1.2	11
90	Mediation of muscular control of rhinarial motility in rats by the nasal cartilaginous skeleton. <i>Anatomical Record</i> , 2013 , 296, 1821-32	2.1	10

89	Differential Multiphoton Laser Scanning Microscopy. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2012 , 18, 14-28	3.8	8
88	Vectorization of optically sectioned brain microvasculature: learning aids completion of vascular graphs by connecting gaps and deleting open-ended segments. <i>Medical Image Analysis</i> , 2012 , 16, 1241-	5 ^{§5.4}	24
87	Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2012 , 32, 1277-309	7.3	288
86	Dorsorostral snout muscles in the rat subserve coordinated movement for whisking and sniffing. <i>Anatomical Record</i> , 2012 , 295, 1181-91	2.1	32
85	Prospect for feedback guided surgery with ultra-short pulsed laser light. <i>Current Opinion in Neurobiology</i> , 2012 , 22, 24-33	7.6	38
84	Sniffing and whisking in rodents. <i>Current Opinion in Neurobiology</i> , 2012 , 22, 243-50	7.6	123
83	A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. <i>Journal of Visualized Experiments</i> , 2012 ,	1.6	80
82	Primary motor cortex reports efferent control of vibrissa motion on multiple timescales. <i>Neuron</i> , 2011 , 72, 344-56	13.9	125
81	Neuronal basis for object location in the vibrissa scanning sensorimotor system. <i>Neuron</i> , 2011 , 72, 455-6	5 8 3.9	109
80	A guide to delineate the logic of neurovascular signaling in the brain. <i>Frontiers in Neuroenergetics</i> , 2011 , 3, 1		59
79	Characterizing ligand-gated ion channel receptors with genetically encoded Ca2++ sensors. <i>PLoS ONE</i> , 2011 , 6, e16519	3.7	31
78	Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8473-8	11.5	201
77	Quality metrics to accompany spike sorting of extracellular signals. <i>Journal of Neuroscience</i> , 2011 , 31, 8699-705	6.6	246
76	Large-scale automated histology in the pursuit of connectomes. <i>Journal of Neuroscience</i> , 2011 , 31, 1612	25-38	121
75	Photon counting, censor corrections, and lifetime imaging for improved detection in two-photon microscopy. <i>Journal of Neurophysiology</i> , 2011 , 105, 3106-13	3.2	29
74	Chronic optical access through a polished and reinforced thinned skull. <i>Nature Methods</i> , 2010 , 7, 981-4	21.6	300
73	An in vivo biosensor for neurotransmitter release and in situ receptor activity. <i>Nature Neuroscience</i> , 2010 , 13, 127-132	25.5	93
72	Topological basis for the robust distribution of blood to rodent neocortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 12670-5	11.5	123

(2008-2010)

71	Automatic identification of fluorescently labeled brain cells for rapid functional imaging. <i>Journal of Neurophysiology</i> , 2010 , 104, 1803-11	3.2	44
70	Optimizing the fluorescent yield in two-photon laser scanning microscopy with dispersion compensation. <i>Optics Express</i> , 2010 , 18, 13661-72	3.3	24
69	Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials. <i>Optics Express</i> , 2010 , 18, 18086-94	3.3	95
68	Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials. <i>Optics Express</i> , 2010 , 18, 24673-8	3.3	106
67	Rapid determination of particle velocity from space-time images using the Radon transform. Journal of Computational Neuroscience, 2010 , 29, 5-11	1.4	96
66	Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. <i>Journal of Neuroscience</i> , 2009 , 29, 14553-70	6.6	373
65	Enter the ratrix. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 19209-10	11.5	1
64	Severe blood-brain barrier disruption and surrounding tissue injury. Stroke, 2009, 40, e666-74	6.7	92
63	A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. <i>PLoS Computational Biology</i> , 2009 , 5, e1000334	5	206
62	Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2009 , 29, 738-51	7.3	101
61	Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system. <i>Nature Neuroscience</i> , 2009 , 12, 492-501	25.5	135
60	Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems. <i>Current Opinion in Biotechnology</i> , 2009 , 20, 90-9	11.4	60
59	Acute vascular disruption and aquaporin 4 loss after stroke. Stroke, 2009, 40, 2182-90	6.7	57
58	In Vivo Two-Photon Laser Scanning Microscopy with Concurrent Plasma-Mediated Ablation Principles and Hardware Realization. <i>Frontiers in Neuroscience</i> , 2009 , 59-115		18
57	The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice. <i>Journal of Clinical Investigation</i> , 2009 , 119, 3373-83	15.9	72
56	Two-Photon Laser Scanning Microscopy as a Tool to Study Cortical Vasodynamics Under Normal and Ischemic Conditions 2009 , 245-261		
55	RWhereRand RwhatRin the whisker sensorimotor system. <i>Nature Reviews Neuroscience</i> , 2008 , 9, 601-12	13.5	411
54	Finding coherence in spontaneous oscillations. <i>Nature Neuroscience</i> , 2008 , 11, 991-3	25.5	48

53	Chapter 10. In vivo measurements of blood flow and glial cell function with two-photon laser-scanning microscopy. <i>Methods in Enzymology</i> , 2008 , 444, 231-54	1.7	33
52	Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity. <i>Journal of Neuroscience</i> , 2008 , 28, 3438-55	6.6	126
51	Advancing multifocal nonlinear microscopy: development and application of a novel multibeam Yb:KGd(WO4)2 oscillator. <i>Optics Express</i> , 2008 , 16, 17574-84	3.3	29
50	Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex. <i>Journal of Neuroscience</i> , 2008 , 28, 14347-57	6.6	148
49	Texture coding in the rat whisker system: slip-stick versus differential resonance. <i>PLoS Biology</i> , 2008 , 6, e215	9.7	163
48	Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. <i>Journal of Neuroscience</i> , 2007 , 27, 4452-9	6.6	307
47	Active spatial perception in the vibrissa scanning sensorimotor system. <i>PLoS Biology</i> , 2007 , 5, e15	9.7	123
46	Penetrating arterioles are a bottleneck in the perfusion of neocortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 365-70	11.5	268
45	Large two-photon absorptivity of hemoglobin in the infrared range of 780-880 nm. <i>Journal of Chemical Physics</i> , 2007 , 126, 025102	3.9	30
44	Wilder Penfield in the age of YouTube: visualizing the sequential activation of sensorimotor areas across neocortex. <i>Neuron</i> , 2007 , 56, 760-2	13.9	3
43	Active sensation: insights from the rodent vibrissa sensorimotor system. <i>Current Opinion in Neurobiology</i> , 2006 , 16, 435-44	7.6	285
42	Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. <i>PLoS Biology</i> , 2006 , 4, e22	9.7	274
41	Spectral Mixing in Nervous Systems: Experimental Evidence and Biologically Plausible Circuits. <i>Progress of Theoretical Physics Supplement</i> , 2006 , 161, 86-98		5
40	Exploratory whisking by rat is not phase locked to the hippocampal theta rhythm. <i>Journal of Neuroscience</i> , 2006 , 26, 6518-22	6.6	33
39	Seeing what the mouse sees with its vibrissae: a matter of behavioral state. <i>Neuron</i> , 2006 , 50, 524-6	13.9	13
38	Coding of stimulus frequency by latency in thalamic networks through the interplay of GABAB-mediated feedback and stimulus shape. <i>Journal of Neurophysiology</i> , 2006 , 95, 1735-50	3.2	19
37	Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. <i>Nature Methods</i> , 2006 , 3, 99-108	21.6	235
36	MPScope: a versatile software suite for multiphoton microscopy. <i>Journal of Neuroscience Methods</i> , 2006 , 156, 351-9	3	94

(2002-2005)

35	Femtosecond laser-drilled capillary integrated into a microfluidic device. <i>Applied Physics Letters</i> , 2005 , 86, 201106	3.4	91
34	Positive feedback in a brainstem tactile sensorimotor loop. <i>Neuron</i> , 2005 , 45, 447-57	13.9	90
33	Activation of nucleus basalis facilitates cortical control of a brain stem motor program. <i>Journal of Neurophysiology</i> , 2005 , 94, 699-711	3.2	35
32	From art to engineering? The rise of in vivo mammalian electrophysiology via genetically targeted labeling and nonlinear imaging. <i>PLoS Biology</i> , 2005 , 3, e355	9.7	19
31	Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat. <i>Journal of Neurophysiology</i> , 2004 , 92, 1700-7	3.2	74
30	Goal-directed whisking increases phase-locking between vibrissa movement and electrical activity in primary sensory cortex in rat. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 12348-53	11.5	64
29	Developmental regulation of active and passive membrane properties in rat vibrissa motoneurones. <i>Journal of Physiology</i> , 2004 , 556, 203-19	3.9	23
28	Cutting Tissue With Ultrashort Pulsed Laser Light. Optics and Photonics News, 2004, 15, 24	1.9	4
27	Frisking the whiskers: patterned sensory input in the rat vibrissa system. <i>Neuron</i> , 2004 , 41, 181-4	13.9	52
26	Reversing cerebellar long-term depression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 15989-93	11.5	130
25	Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking. <i>Journal of Neurophysiology</i> , 2003 , 90, 2950-63	3.2	70
24	Imaging reveals synaptic targets of a swim-terminating neuron in the leech CNS. <i>Journal of Neuroscience</i> , 2003 , 23, 11402-10	6.6	43
23	All-optical histology using ultrashort laser pulses. <i>Neuron</i> , 2003 , 39, 27-41	13.9	164
22	Closed-loop neuronal computations: focus on vibrissa somatosensation in rat. <i>Cerebral Cortex</i> , 2003 , 13, 53-62	5.1	89
21	Unilateral vibrissa contact: changes in amplitude but not timing of rhythmic whisking. <i>Somatosensory & Motor Research</i> , 2003 , 20, 163-9	1.2	54
20	Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. <i>Journal of Neurophysiology</i> , 2003 , 89, 104-17	3.2	295
19	Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking. <i>Journal of Neurophysiology</i> , 2002 , 87, 2137-48	3.2	98
18	Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy. <i>Microscopy Research and Technique</i> , 2002 , 56, 304-5	2.8	46

17	Spectral mixing of rhythmic neuronal signals in sensory cortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 15176-81	11.5	21
16	Adaptive filtering of vibrissa input in motor cortex of rat. <i>Neuron</i> , 2002 , 34, 1021-34	13.9	90
15	Cortical blood flow through individual capillaries in rat vibrissa S1 cortex: stimulus-induced changes in flow are comparable to the underlying fluctuations in flow. <i>International Congress Series</i> , 2002 , 1235, 115-122		9
14	Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. <i>Neuron</i> , 2001 , 29, 33-44	13.9	343
13	Chattering and differential signal processing in identified motion-sensitive neurons of parallel visual pathways in the chick tectum. <i>Journal of Neuroscience</i> , 2001 , 21, 6440-6	6.6	55
12	Distributed and partially separate pools of neurons are correlated with two different components of the gill-withdrawal reflex in Aplysia. <i>Journal of Neuroscience</i> , 2000 , 20, 8485-92	6.6	21
11	Dendritic Ca(2+)-activated K(+) conductances regulate electrical signal propagation in an invertebrate neuron. <i>Journal of Neuroscience</i> , 1999 , 19, 8319-26	6.6	19
10	Supralinear summation of synaptic inputs by an invertebrate neuron: dendritic gain is mediated by an "inward rectifier" K(+) current. <i>Journal of Neuroscience</i> , 1999 , 19, 5875-88	6.6	51
9	Ultra-miniature headstage with 6-channel drive and vacuum-assisted micro-wire implantation for chronic recording from the neocortex. <i>Journal of Neuroscience Methods</i> , 1999 , 90, 37-46	3	41
8	Anatomical loops and their electrical dynamics in relation to whisking by rat. <i>Somatosensory & Motor Research</i> , 1999 , 16, 69-88	1.2	150
7	Identification of neural circuits by imaging coherent electrical activity with FRET-based dyes. <i>Neuron</i> , 1999 , 23, 449-59	13.9	81
6	Voltage-sensitive dyes for monitoring multineuronal activity in the intact central nervous system. <i>The Histochemical Journal</i> , 1998 , 30, 169-87		54
5	Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. <i>Journal of Neurophysiology</i> , 1997 , 78, 1144-9	3.2	185
4	In vivo dendritic calcium dynamics in neocortical pyramidal neurons. <i>Nature</i> , 1997 , 385, 161-5	50.4	670
3	Erratum to Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability <i>Journal of Neuroscience Methods</i> , 1997 , 71, 233	3	1
2	Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. <i>Journal of Comparative Neurology</i> , 1996 , 375, 89-108	3.4	201
1	Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. <i>Journal of Neuroscience Methods</i> , 1996 , 69, 175-88	3	257