Costantino Iadecola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2297118/publications.pdf

Version: 2024-02-01

412 papers

58,890 citations

111 h-index 230 g-index

423 all docs 423 docs citations

times ranked

423

50374 citing authors

#	Article	IF	CITATIONS
1	Pathobiology of ischaemic stroke: an integrated view. Trends in Neurosciences, 1999, 22, 391-397.	8.6	3,484
2	Vascular Contributions to Cognitive Impairment and Dementia. Stroke, 2011, 42, 2672-2713.	2.0	2,989
3	The immunology of stroke: from mechanisms to translation. Nature Medicine, 2011, 17, 796-808.	30.7	2,006
4	Neurovascular regulation in the normal brain and in Alzheimer's disease. Nature Reviews Neuroscience, 2004, 5, 347-360.	10.2	1,926
5	The Science of Stroke: Mechanisms in Search of Treatments. Neuron, 2010, 67, 181-198.	8.1	1,628
6	Guidelines for the Primary Prevention of Stroke. Stroke, 2014, 45, 3754-3832.	2.0	1,621
7	The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron, 2017, 96, 17-42.	8.1	1,471
8	National Institute of Neurological Disorders and Stroke–Canadian Stroke Network Vascular Cognitive Impairment Harmonization Standards. Stroke, 2006, 37, 2220-2241.	2.0	1,445
9	The Pathobiology of Vascular Dementia. Neuron, 2013, 80, 844-866.	8.1	1,322
10	Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. Journal of Applied Physiology, 2006, 100, 328-335.	2.5	1,086
11	Glial regulation of the cerebral microvasculature. Nature Neuroscience, 2007, 10, 1369-1376.	14.8	1,003
12	Bright and dark sides of nitric oxide in ischemic brain injury. Trends in Neurosciences, 1997, 20, 132-139.	8.6	971
13	The neural basis of functional brain imaging signals. Trends in Neurosciences, 2002, 25, 621-625.	8.6	793
14	Commensal microbiota affects ischemic stroke outcome by regulating intestinal $\hat{l}^3\hat{l}$ T cells. Nature Medicine, 2016, 22, 516-523.	30.7	770
15	Cyclo-Oxygenase-2 Gene Expression in Neurons Contributes to Ischemic Brain Damage. Journal of Neuroscience, 1997, 17, 2746-2755.	3.6	697
16	Nitric Oxide Synthase Inhibition and Cerebrovascular Regulation. Journal of Cerebral Blood Flow and Metabolism, 1994, 14, 175-192.	4.3	650
17	Delayed Reduction of Ischemic Brain Injury and Neurological Deficits in Mice Lacking the Inducible Nitric Oxide Synthase Gene. Journal of Neuroscience, 1997, 17, 9157-9164.	3.6	644
18	Inflammation and Stroke: An Overview. Neurotherapeutics, 2016, 13, 661-670.	4.4	631

#	Article	IF	CITATIONS
19	Effects of COVID-19 on the Nervous System. Cell, 2020, 183, 16-27.e1.	28.9	526
20	Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron, 1995, 15, 1203-1218.	8.1	520
21	Engaging neuroscience to advance translational research in brain barrier biology. Nature Reviews Neuroscience, 2011, 12, 169-182.	10.2	508
22	Risk of Ischemic Stroke in Patients With Coronavirus Disease 2019 (COVID-19) vs Patients With Influenza. JAMA Neurology, 2020, 77, 1366.	9.0	506
23	Impact of Hypertension on Cognitive Function: A Scientific Statement From the American Heart Association. Hypertension, 2016, 68, e67-e94.	2.7	482
24	Atrial Fibrillation and Mechanisms of Stroke. Stroke, 2016, 47, 895-900.	2.0	466
25	Risk of Arterial Thromboembolism in PatientsÂWithÂCancer. Journal of the American College of Cardiology, 2017, 70, 926-938.	2.8	465
26	The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathologica, 2010, 120, 287-296.	7.7	462
27	Inducible Nitric Oxide Synthase Gene Expression in Brain following Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 378-384.	4.3	461
28	Vascular dysfunction—The disregarded partner of Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 158-167.	0.8	454
29	Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link?. Trends in Neurosciences, 1993, 16, 206-214.	8.6	431
30	Hypertension and Cerebrovascular Dysfunction. Cell Metabolism, 2008, 7, 476-484.	16.2	425
31	Reduced susceptibility to ischemic brain injury and <i>N</i> -methyl- <scp>d</scp> -aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1294-1299.	7.1	413
32	Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. Journal of Experimental Medicine, 2010, 207, 117-128.	8.5	411
33	Cerebral ischemia and inflammation. Current Opinion in Neurology, 2001, 14, 89-94.	3.6	395
34	Vascular Cognitive Impairment andÂDementia. Journal of the American College of Cardiology, 2019, 73, 3326-3344.	2.8	384
35	SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nature Neuroscience, 1999, 2, 157-161.	14.8	371
36	Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nature Medicine, 2006, 12, 225-229.	30.7	359

#	Article	IF	CITATIONS
37	Immune responses to stroke: mechanisms, modulation, and therapeutic potential. Journal of Clinical Investigation, 2020, 130, 2777-2788.	8.2	344
38	Stroke research at a crossroad: asking the brain for directions. Nature Neuroscience, 2011, 14, 1363-1368.	14.8	338
39	NF-κB Regulates Phagocytic NADPH Oxidase by Inducing the Expression of gp91. Journal of Biological Chemistry, 2006, 281, 5657-5667.	3.4	333
40	Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer's disease mouse models. Nature Neuroscience, 2019, 22, 413-420.	14.8	316
41	Inducible Nitric Oxide Synthase Gene Expression in Vascular Cells After Transient Focal Cerebral Ischemia. Stroke, 1996, 27, 1373-1380.	2.0	302
42	Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1347-1352.	7.1	290
43	Hypertension. Hypertension, 2013, 62, 810-817.	2.7	287
44	Neurovascular and Cognitive Dysfunction in Hypertension. Circulation Research, 2019, 124, 1025-1044.	4.5	284
45	Defining Optimal Brain Health in Adults: A Presidential Advisory From the American Heart Association/American Stroke Association. Stroke, 2017, 48, e284-e303.	2.0	279
46	Perioperative Atrial Fibrillation and the Long-term Risk of Ischemic Stroke. JAMA - Journal of the American Medical Association, 2014, 312, 616.	7.4	266
47	Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H315-H323.	3.2	249
48	Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: Implications for BOLD fMRI. Magnetic Resonance in Medicine, 2001, 45, 791-800.	3.0	248
49	Cyclooxygenase-2 Contributes to Functional Hyperemia in Whisker-Barrel Cortex. Journal of Neuroscience, 2000, 20, 763-770.	3.6	247
50	Nox2-Derived Reactive Oxygen Species Mediate Neurovascular Dysregulation in the Aging Mouse Brain. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1908-1918.	4.3	245
51	Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nature Neuroscience, 2018, 21, 240-249.	14.8	242
52	Revisiting the neurovascular unit. Nature Neuroscience, 2021, 24, 1198-1209.	14.8	242
53	Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. Journal of Clinical Investigation, 2016, 126, 4674-4689.	8.2	235
54	Angiotensin II Impairs Neurovascular Coupling in Neocortex Through NADPH Oxidase–Derived Radicals. Circulation Research, 2004, 95, 1019-1026.	4.5	233

#	Article	IF	Citations
55	Local and Propagated Vascular Responses Evoked by Focal Synaptic Activity in Cerebellar Cortex. Journal of Neurophysiology, 1997, 78, 651-659.	1.8	230
56	Simultaneous Blood Oxygenation Level-Dependent and Cerebral Blood Flow Functional Magnetic Resonance Imaging during Forepaw Stimulation in the Rat. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 871-879.	4.3	230
57	NMDA Receptor Activation Increases Free Radical Production through Nitric Oxide and NOX2. Journal of Neuroscience, 2009, 29, 2545-2552.	3.6	224
58	NADPH Oxidase-Derived Reactive Oxygen Species Mediate the Cerebrovascular Dysfunction Induced by the Amyloid Peptide. Journal of Neuroscience, 2005, 25, 1769-1777.	3 . 6	221
59	Marked Induction of Calcium-Independent Nitric Oxide Synthase Activity after Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 52-59.	4.3	219
60	Nitric Oxide Donors Increase Blood Flow and Reduce Brain Damage in Focal Ischemia: Evidence That Nitric Oxide is Beneficial in the Early Stages of Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1994, 14, 217-226.	4. 3	206
61	The role of microglia and myeloid immune cells in acute cerebral ischemia. Frontiers in Cellular Neuroscience, 2014, 8, 461.	3.7	203
62	Preventing dementia by preventing stroke: The Berlin Manifesto. Alzheimer's and Dementia, 2019, 15, 961-984.	0.8	200
63	Alzheimer's Disease and Vascular Aging. Journal of the American College of Cardiology, 2020, 75, 942-951.	2.8	197
64	Nitric oxide synthase-containing neural processes on large cerebral arteries and cerebral microvessels. Brain Research, 1993, 606, 148-155.	2.2	196
65	Alterations in Cerebral Blood Flow and Glucose Utilization in Mice Overexpressing the Amyloid Precursor Protein. Neurobiology of Disease, 2002, 9, 61-68.	4.4	192
66	MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. Journal of Experimental Medicine, 2007, 204, 2063-2074.	8.5	192
67	Cyclooxygenase-1 Participates in Selected Vasodilator Responses of the Cerebral Circulation. Circulation Research, 2001, 88, 600-608.	4.5	191
68	Converging Pathogenic Mechanisms in Vascular and Neurodegenerative Dementia. Stroke, 2003, 34, 335-337.	2.0	190
69	The Class B Scavenger Receptor CD36 Mediates Free Radical Production and Tissue Injury in Cerebral Ischemia. Journal of Neuroscience, 2005, 25, 2504-2512.	3.6	186
70	Threats to the Mind. Stroke, 2009, 40, S40-4.	2.0	186
71	Increased Susceptibility to Ischemic Brain Damage in Transgenic Mice Overexpressing the Amyloid Precursor Protein. Journal of Neuroscience, 1997, 17, 7655-7661.	3 . 6	185
72	$\hat{A^2}$ -peptides enhance vasoconstriction in cerebral circulation. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2417-H2424.	3.2	185

#	Article	IF	CITATIONS
73	Association between incident cancer and subsequent stroke. Annals of Neurology, 2015, 77, 291-300.	5.3	180
74	Exogenous Aβ1–40 Reproduces Cerebrovascular Alterations Resulting from Amyloid Precursor Protein Overexpression in Mice. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1659-1668.	4.3	179
75	Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension, 2019, 73, e87-e120.	2.7	177
76	Consensus statement for diagnosis of subcortical small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 6-25.	4.3	173
77	Inducible nitric oxide synthase expression in human cerebral infarcts. Acta Neuropathologica, 1999, 97, 215-220.	7.7	172
78	Brain-Immune Interactions and Ischemic Stroke. Archives of Neurology, 2012, 69, 576.	4.5	172
79	Ischemic stroke in cancer patients: A review of an underappreciated pathology. Annals of Neurology, 2018, 83, 873-883.	5.3	171
80	Metabolic and Non-Cognitive Manifestations of Alzheimer's Disease: The Hypothalamus as Both Culprit and Target of Pathology. Cell Metabolism, 2015, 22, 761-776.	16.2	170
81	Size-selective opening of the blood–brain barrier by targeting endothelial sphingosine 1–phosphate receptor 1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4531-4536.	7.1	167
82	Restarting Anticoagulant Therapy After Intracranial Hemorrhage. Stroke, 2017, 48, 1594-1600.	2.0	167
83	Aminoguanidine Ameliorates and I-Arginine Worsens Brain Damage From Intraluminal Middle Cerebral Artery Occlusion. Stroke, 1996, 27, 317-323.	2.0	167
84	NADPH Oxidase Contributes to Angiotensin II Signaling in the Nucleus Tractus Solitarius. Journal of Neuroscience, 2004, 24, 5516-5524.	3.6	161
85	Brain Perivascular Macrophages Initiate the Neurovascular Dysfunction of Alzheimer Al 2 Peptides. Circulation Research, 2017, 121, 258-269.	4.5	159
86	Early Temporal Characteristics of Cerebral Blood Flow and Deoxyhemoglobin Changes during Somatosensory Stimulation. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 201-206.	4.3	157
87	Cyclooxygenase-2 immunoreactivity in the human brain following cerebral ischemia. Acta Neuropathologica, 1999, 98, 9-14.	7.7	156
88	The role of neuronal signaling in controlling cerebral blood flow. Brain and Language, 2007, 102, 141-152.	1.6	155
89	Recurrent thromboembolic events after ischemic stroke in patients with cancer. Neurology, 2014, 83, 26-33.	1.1	144
90	Brain perivascular macrophages: characterization and functional roles in health and disease. Journal of Molecular Medicine, 2017, 95, 1143-1152.	3.9	143

#	Article	IF	Citations
91	Angiotensin II Attenuates Endothelium-Dependent Responses in the Cerebral Microcirculation Through Nox-2–Derived Radicals. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 826-832.	2.4	141
92	Dietary salt promotes cognitive impairment through tau phosphorylation. Nature, 2019, 574, 686-690.	27.8	140
93	Electrical stimulation of cerebellar fastigial nucleus increases cerebral cortical blood flow without change in local metabolism: Evidence for an intrinsic system in brain for primary vasodilation. Brain Research, 1983, 260, 35-49.	2.2	137
94	Neurovascular Protection by Ischemic Tolerance: Role of Nitric Oxide and Reactive Oxygen Species. Journal of Neuroscience, 2007, 27, 7083-7093.	3.6	137
95	Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Annals of Neurology, 2004, 55, 668-675.	5.3	136
96	Cerebrovascular Nitrosative Stress Mediates Neurovascular and Endothelial Dysfunction Induced by Angiotensin II. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 303-309.	2.4	136
97	ER stress in the brain subfornical organ mediates angiotensin-dependent hypertension. Journal of Clinical Investigation, 2012, 122, 3960-3964.	8.2	133
98	Amyloid \hat{l}^2 -Induced Impairments in Hippocampal Synaptic Plasticity Are Rescued by Decreasing Mitochondrial Superoxide. Journal of Neuroscience, 2011, 31, 5589-5595.	3.6	132
99	Hypertension enhances $A\hat{l}^2$ induced neurovascular dysfunction, promotes \hat{l}^2 secretase activity, and leads to amyloidogenic processing of APP. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 241-252.	4.3	131
100	Hypertension and Dementia. Hypertension, 2014, 64, 3-5.	2.7	130
101	Scavenger receptor CD36 is essential for the cerebrovascular oxidative stress and neurovascular dysfunction induced by amyloid \hat{l}^2 . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5063-5068.	7.1	128
102	$\hat{Al^2}$ -Induced Vascular Oxidative Stress and Attenuation of Functional Hyperemia in Mouse Somatosensory Cortex. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 334-342.	4.3	127
103	Arterial thromboembolic events preceding the diagnosis of cancer in older persons. Blood, 2019, 133, 781-789.	1.4	127
104	The Cyclooxygenase-2 Inhibitor NS-398 Ameliorates Ischemic Brain Injury in Wild-Type Mice but not in Mice with Deletion of the Inducible Nitric Oxide Synthase Gene. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 1213-1219.	4.3	126
105	Brain dendritic cells in ischemic stroke: Time course, activation state, and origin. Brain, Behavior, and Immunity, 2010, 24, 724-737.	4.1	124
106	Cyclooxygenase-2 Inhibitor NS-398 Protects Neuronal Cultures From Lipopolysaccharide-Induced Neurotoxicity. Stroke, 2001, 32, 2370-2375.	2.0	123
107	Stroke: Working Toward a Prioritized World Agenda. Stroke, 2010, 41, 1084-1099.	2.0	122
108	Inducible Nitric Oxide Synthase Contributes to Gender Differences in Ischemic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 392-401.	4.3	121

#	Article	IF	Citations
109	Impaired AÃŽÂ 2 clearance: a potential link between atherosclerosis and Alzheimerâ \hat{a} , $\neg \hat{a}$,,¢s disease. Frontiers in Aging Neuroscience, 2015, 7, 115.	3.4	119
110	Key Role of CD36 in Toll-Like Receptor 2 Signaling in Cerebral Ischemia. Stroke, 2010, 41, 898-904.	2.0	117
111	Prolonged inhibition of brain nitric oxide synthase by short-term systemic administration of nitro-l-arginine methyl ester. Neurochemical Research, 1994, 19, 501-505.	3.3	112
112	Inducible Nitric Oxide Synthase in Neutrophils and Endothelium Contributes to Ischemic Brain Injury in Mice. Journal of Immunology, 2014, 193, 2531-2537.	0.8	112
113	Local cerebral blood flow increases during auditory and emotional processing in the conscious rat. Science, 1983, 221, 576-578.	12.6	110
114	Cerebral Ischemia Enhances Polyamine Oxidation: Identification of Enzymatically Formed 3-Aminopropanal as an Endogenous Mediator of Neuronal and Glial Cell Death. Journal of Experimental Medicine, 1998, 188, 327-340.	8.5	110
115	Translational Stroke Research. Stroke, 2017, 48, 2632-2637.	2.0	108
116	Innate immunity receptor CD36 promotes cerebral amyloid angiopathy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3089-3094.	7.1	107
117	Quantitative measurements of cerebral blood flow in rats using the FAIR technique: Correlation with previous lodoantipyrine autoradiographic studies. Magnetic Resonance in Medicine, 1998, 39, 564-573.	3.0	106
118	Limitations of Collateral Flow after Occlusion of a Single Cortical Penetrating Arteriole. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1914-1927.	4.3	106
119	The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H397-H407.	3.2	106
120	Herbal alkaloid tetrandrine: from an ion channel blocker to inhibitor of tumor proliferation. Trends in Pharmacological Sciences, 2004, 25, 120-123.	8.7	105
121	Obligatory Role of Inducible Nitric Oxide Synthase in Ischemic Preconditioning. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 493-501.	4.3	105
122	Age-Dependent Neurovascular Dysfunction and Damage in a Mouse Model of Cerebral Amyloid Angiopathy. Stroke, 2014, 45, 1815-1821.	2.0	104
123	Nuclear Factor-κB Activation and Postischemic Inflammation Are Suppressed in CD36-Null Mice after Middle Cerebral Artery Occlusion. Journal of Neuroscience, 2008, 28, 1649-1658.	3.6	103
124	Reduction of Focal Cerebral Ischemic Damage by Delayed Treatment with Nitric Oxide Donors. Journal of Cerebral Blood Flow and Metabolism, 1994, 14, 574-580.	4.3	102
125	Delayed effect of administration of COX-2 inhibitor in mice with acute cerebral ischemia. Brain Research, 2003, 960, 273-276.	2.2	101
126	Nox2, Ca 2+, and Protein Kinase C Play a Role in Angiotensin II-Induced Free Radical Production in Nucleus Tractus Solitarius. Hypertension, 2006, 48, 482-489.	2.7	100

#	Article	IF	Citations
127	Paroxysmal Supraventricular Tachycardia and the Risk of Ischemic Stroke. Stroke, 2013, 44, 1550-1554.	2.0	100
128	Apolµ4 disrupts neurovascular regulation and undermines white matter integrity and cognitive function. Nature Communications, 2018, 9, 3816.	12.8	100
129	Molecular Pathology of Cerebral Ischemia: Delayed Gene Expression and Strategies for Neuroprotection. Annals of the New York Academy of Sciences, 1997, 835, 203-217.	3.8	99
130	Gene-dosing effect and persistence of reduction in ischemic brain injury in mice lacking inducible nitric oxide synthase. Brain Research, 2000, 872, 215-218.	2.2	97
131	The Transcription Factor Interferon Regulatory Factor 1 Is Expressed after Cerebral Ischemia and Contributes to Ischemic Brain Injury. Journal of Experimental Medicine, 1999, 189, 719-727.	8.5	96
132	Localization of NADPH diaphorase in neurons of the rostral ventral medulla: possible role of nitric oxide in central autonomic regulation and oxygen chemoreception. Brain Research, 1993, 603, 173-179.	2.2	95
133	Delayed Treatment with Aminoguanidine Decreases Focal Cerebral Ischemic Damage and Enhances Neurologic Recovery in Rats. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 1107-1113.	4.3	95
134	A Concerted Appeal for International Cooperation in Preclinical Stroke Research. Stroke, 2013, 44, 1754-1760.	2.0	94
135	Endothelium-Macrophage Crosstalk Mediates Blood-Brain Barrier Dysfunction in Hypertension. Hypertension, 2020, 76, 795-807.	2.7	91
136	Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1890-H1899.	3.2	89
137	Stroke: Working toward a Prioritized World Agenda. International Journal of Stroke, 2010, 5, 238-256.	5.9	89
138	Central Cardiovascular Circuits Contribute to the Neurovascular Dysfunction in Angiotensin II Hypertension. Journal of Neuroscience, 2012, 32, 4878-4886.	3.6	89
139	Structural connectome disruption at baseline predicts 6-months post-stroke outcome. Human Brain Mapping, 2016, 37, 2587-2601.	3.6	89
140	Cerebrovascular effects of amyloid-beta peptides: mechanisms and implications for Alzheimer's dementia. Cellular and Molecular Neurobiology, 2003, 23, 681-689.	3.3	87
141	cis-Acting Element-specific Transcriptional Activity of Differentially Phosphorylated Nuclear Factor-κB. Journal of Biological Chemistry, 2005, 280, 244-252.	3.4	87
142	Increased Susceptibility to Ischemic Brain Injury in Cyclooxygenase-1–Deficient Mice. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 1436-1441.	4.3	86
143	Key role of tissue plasminogen activator in neurovascular coupling. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1073-1078.	7.1	86
144	Neuronal Nitric Oxide Contributes to Neuroplasticity-Associated Protein Expression through cGMP, Protein Kinase G, and Extracellular Signal-Regulated Kinase. Journal of Neuroscience, 2011, 31, 6947-6955.	3.6	85

#	Article	IF	CITATIONS
145	Occlusion of Cortical Ascending Venules Causes Blood Flow Decreases, Reversals in Flow Direction, and Vessel Dilation in Upstream Capillaries. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 2243-2254.	4.3	85
146	Progranulin Deficiency Promotes Post-Ischemic Blood–Brain Barrier Disruption. Journal of Neuroscience, 2013, 33, 19579-19589.	3.6	85
147	Hypertension, Angiotensin, and Stroke: Beyond Blood Pressure. Stroke, 2004, 35, 348-350.	2.0	84
148	Tailoring the Approach to Embolic Stroke of Undetermined Source. JAMA Neurology, 2019, 76, 855.	9.0	84
149	Nitric oxide and adenosine mediate vasodilation during functional activation in cerebellar cortex. Neuropharmacology, 1994, 33, 1453-1461.	4.1	83
150	Cyclooxygenase-2 Does Not Contribute to Postischemic Production of Reactive Oxygen Species. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 545-551.	4.3	83
151	Spatio-temporal profile, phenotypic diversity, and fate of recruited monocytes into the post-ischemic brain. Journal of Neuroinflammation, 2016, 13, 285.	7.2	83
152	MiR-592 Regulates the Induction and Cell Death-Promoting Activity of p75 ^{NTR} in Neuronal Ischemic Injury. Journal of Neuroscience, 2014, 34, 3419-3428.	3.6	82
153	Prohibitin Reduces Mitochondrial Free Radical Production and Protects Brain Cells from Different Injury Modalities. Journal of Neuroscience, 2012, 32, 583-592.	3.6	81
154	Th17 and Cognitive Impairment: Possible Mechanisms of Action. Frontiers in Neuroanatomy, 2019, 13, 95.	1.7	81
155	Cryptogenic Subtype Predicts Reduced Survival Among Cancer Patients With Ischemic Stroke. Stroke, 2014, 45, 2292-2297.	2.0	80
156	Cerebrovascular Alterations in Alzheimer Disease. Circulation Research, 2018, 123, 406-408.	4.5	80
157	Transgenic Mice Overexpressing Amyloid Precursor Protein Exhibit Early Metabolic Deficits and a Pathologically Low Leptin State Associated with Hypothalamic Dysfunction in Arcuate Neuropeptide Y Neurons. Journal of Neuroscience, 2014, 34, 9096-9106.	3.6	79
158	Magnetic Resonance Angiography Detection of Abnormal Carotid Artery Plaque in Patients With Cryptogenic Stroke. Journal of the American Heart Association, 2015, 4, e002012.	3.7	79
159	Role of nitric oxide and acetylcholine in neocortical hyperemia elicited by basal forebrain stimulation: Evidence for an involvement of endothelial nitric oxide. Neuroscience, 1995, 69, 1195-1204.	2.3	78
160	Gadolinium Enhancement in Intracranial Atherosclerotic Plaque and Ischemic Stroke: A Systematic Review and Metaâ€Analysis. Journal of the American Heart Association, 2016, 5, .	3.7	78
161	Tau induces PSD95–neuronal NOS uncoupling and neurovascular dysfunction independent of neurodegeneration. Nature Neuroscience, 2020, 23, 1079-1089.	14.8	78
162	Time Dependence of Effect of Nitric Oxide Synthase Inhibition on Cerebral Ischemic Damage. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 595-601.	4.3	77

#	Article	IF	CITATIONS
163	Association Between Major Perioperative Hemorrhage and Stroke or Q-Wave Myocardial Infarction. Circulation, 2012, 126, 207-212.	1.6	76
164	Neurovascular Regulation in the Ischemic Brain. Antioxidants and Redox Signaling, 2015, 22, 149-160.	5 . 4	76
165	Global increase in cerebral metabolism and blood flow produced by focal electrical stimulation of dorsal medullary reticular formation in rat. Brain Research, 1983, 272, 101-114.	2.2	75
166	Continuous Monitoring of Cerebrocortical Blood Flow during Stimulation of the Cerebellar Fastigial Nucleus: A Study by Laser-Doppler Flowmetry. Journal of Cerebral Blood Flow and Metabolism, 1990, 10, 608-617.	4.3	74
167	Synaptic and Vascular Associations of Neurons Containing Cyclooxygenase-2 and Nitric Oxide Synthase in Rat Somatosensory Cortex. Cerebral Cortex, 2005, 15, 1250-1260.	2.9	74
168	Neurogenic control of the cerebral microcirculation: is dopamine minding the store?. Nature Neuroscience, 1998, 1, 263-265.	14.8	73
169	Neuronal and endothelial sites of acetylcholine synthesis and release associated with microvessels in rat cerebral cortex: ultrastructural and neurochemical studies. Brain Research, 1988, 454, 11-30.	2.2	72
170	Interaction Between Inducible Nitric Oxide Synthase and Poly(ADP-ribose) Polymerase in Focal Ischemic Brain Injury. Stroke, 2004, 35, 2896-2901.	2.0	72
171	Genetic deletion of CD36 enhances injury after acute neonatal stroke. Annals of Neurology, 2012, 72, 961-970.	5. 3	72
172	Endothelial S1P ₁ Signaling Counteracts Infarct Expansion in Ischemic Stroke. Circulation Research, 2021, 128, 363-382.	4.5	71
173	Chapter 14 Cerebral vascular dysregulation in the ischemic brain. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 92, 283-305.	1.8	70
174	The Neuroprotective Effect of Prostaglandin E2 EP1 Receptor Inhibition has a Wide Therapeutic Window, is Sustained in Time and is not Sexually Dimorphic. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 66-72.	4.3	70
175	Associations between cerebrovascular risk factors and parkinson disease. Annals of Neurology, 2019, 86, 572-581.	5 . 3	69
176	A novel vasodepressor response elicited from the rat cerebellar fastigial nucleus: the fastigial depressor response. Brain Research, 1986, 370, 378-382.	2.2	68
177	Immune mechanisms in cerebral ischemic tolerance. Frontiers in Neuroscience, 2014, 8, 44.	2.8	68
178	The Janus Face of Cyclooxygenase-2 in Ischemic Stroke. Stroke, 2005, 36, 182-185.	2.0	67
179	"Small Blood Vessels: Big Health Problems?― Scientific Recommendations of the National Institutes of Health Workshop. Journal of the American Heart Association, 2016, 5, .	3.7	67
180	Inflammation, Autoimmunity, Infection, and Stroke. Stroke, 2020, 51, 711-718.	2.0	67

#	Article	IF	Citations
181	Endothelin 1–Dependent Neurovascular Dysfunction in Chronic Intermittent Hypoxia. Hypertension, 2012, 60, 106-113.	2.7	66
182	Lesions of the basal forebrain in rat selectively impair the cortical vasodilation elicited from cerebellar fastigial nucleus. Brain Research, 1983, 279, 41-52.	2.2	64
183	Hypertension, dietary salt and cognitive impairment. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2112-2128.	4.3	64
184	Safety Outcomes After Percutaneous Transcatheter Closure of Patent Foramen Ovale. Stroke, 2017, 48, 3073-3077.	2.0	63
185	From CSD to headache: A long and winding road. Nature Medicine, 2002, 8, 110-112.	30.7	62
186	Angiotensin II subtype 1A (AT1A) receptors in the rat sensory vagal complex: subcellular localization and association with endogenous angiotensin. Neuroscience, 2003, 122, 21-36.	2.3	62
187	Cerebral ischemia induces the aggregation of proteins linked to neurodegenerative diseases. Scientific Reports, 2018, 8, 2701.	3.3	62
188	Attenuation of activity-induced increases in cerebellar blood flow in mice lacking neuronal nitric oxide synthase. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H298-H304.	3.2	61
189	Chronic Intermittent Hypoxia Induces NMDA Receptor-Dependent Plasticity and Suppresses Nitric Oxide Signaling in the Mouse Hypothalamic Paraventricular Nucleus. Journal of Neuroscience, 2010, 30, 12103-12112.	3.6	61
190	Critical Role of Flavin and Glutathione in Complex I–Mediated Bioenergetic Failure in Brain Ischemia/Reperfusion Injury. Stroke, 2018, 49, 1223-1231.	2.0	61
191	Distinct Commensal Bacterial Signature in the Gut Is Associated With Acute and Long-Term Protection From Ischemic Stroke. Stroke, 2020, 51, 1844-1854.	2.0	60
192	Cyclooxygenase 1–Derived Prostaglandin E 2 and EP1 Receptors Are Required for the Cerebrovascular Dysfunction Induced by Angiotensin II. Hypertension, 2010, 55, 911-917.	2.7	58
193	Neutrophil–Lymphocyte Ratio and Perihematomal Edema Growth in Intracerebral Hemorrhage. Stroke, 2017, 48, 2589-2592.	2.0	58
194	Evidence that estrogen directly and indirectly modulates C1 adrenergic bulbospinal neurons in the rostral ventrolateral medulla. Brain Research, 2006, 1094, 163-178.	2.2	57
195	Endogenous Protection from Ischemic Brain Injury by Preconditioned Monocytes. Journal of Neuroscience, 2018, 38, 6722-6736.	3.6	57
196	Widespread reductions in cerebral blood flow and metabolism elicited by electrical stimulation of the parabrachial nucleus in rat. Brain Research, 1985, 341, 283-296.	2.2	56
197	Sex differences in the subcellular distribution of angiotensin type 1 receptors and NADPH oxidase subunits in the dendrites of C1 neurons in the rat rostral ventrolateral medulla. Neuroscience, 2009, 163, 329-338.	2.3	56
198	Temporal characteristics of the protective effect of aminoguanidine on cerebral ischemic damage. Brain Research, 1998, 802, 104-110.	2.2	55

#	Article	IF	Citations
199	Angiotensin Il–Dependent Hypertension Requires Cyclooxygenase 1–Derived Prostaglandin E ₂ and EP ₁ Receptor Signaling in the Subfornical Organ of the Brain. Hypertension, 2012, 59, 869-876.	2.7	55
200	Distribution of angiotensin type 1a receptor-containing cells in the brains of bacterial artificial chromosome transgenic mice. Neuroscience, 2012, 226, 489-509.	2.3	55
201	Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R1760-R1770.	1.8	54
202	Exogenous NADPH Increases Cerebral Blood Flow Through NADPH Oxidase–Dependent and –Independent Mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1860-1865.	2.4	54
203	Water Deprivation Induces Neurovascular and Cognitive Dysfunction through Vasopressin-Induced Oxidative Stress. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 852-860.	4.3	54
204	Activation of Cerebellar Climbing Fibers Increases Cerebellar Blood Flow. Stroke, 1998, 29, 499-508.	2.0	53
205	Circulating Endothelin-1 Alters Critical Mechanisms Regulating Cerebral Microcirculation. Hypertension, 2013, 62, 759-766.	2.7	53
206	Neuroprotection by PGE2 receptor EP1 inhibition involves the PTEN/AKT pathway. Neurobiology of Disease, 2008, 29, 543-551.	4.4	52
207	Rate of perihaematomal oedema expansion is associated with poor clinical outcomes in intracerebral haemorrhage. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1169-1173.	1.9	52
208	Stellate Neurons Mediate Functional Hyperemia in the Cerebellar Molecular Layer. Journal of Neuroscience, 2000, 20, 6968-6973.	3.6	51
209	Angiotensin II slow-pressor hypertension enhances NMDA currents and NOX2-dependent superoxide production in hypothalamic paraventricular neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R1096-R1106.	1.8	51
210	Outcomes after intracerebral hemorrhage from arteriovenous malformations. Neurology, 2017, 88, 1882-1888.	1.1	51
211	Local cholinergic mechanisms participate in the increase in cortical cerebral blood flow elicited by electrical stimulation of the fastigial nucleus in rat. Brain Research, 1987, 411, 212-225.	2.2	49
212	Modeling Focal Cerebral Ischemia In Vivo. Methods in Molecular Biology, 2011, 793, 195-209.	0.9	49
213	Reperfusion Rather than Ischemia Drives the Formation of Ubiquitin Aggregates After Middle Cerebral Artery Occlusion. Stroke, 2012, 43, 2229-2235.	2.0	49
214	Nitric Oxide Inhibits Caspase Activation and Apoptotic Morphology but Does Not Rescue Neuronal Death. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 348-357.	4.3	48
215	Endothelial CD36 Contributes to Postischemic Brain Injury by Promoting Neutrophil Activation via CSF3. Journal of Neuroscience, 2015, 35, 14783-14793.	3.6	48
216	Risk factor for Alzheimer's disease breaks the blood–brain barrier. Nature, 2020, 581, 31-32.	27.8	48

#	Article	IF	Citations
217	Effects of aminoguanidine on cerebral ischemia in mice: comparison between mice with and without inducible nitric oxide synthase gene. Neuroscience Letters, 2002, 331, 25-28.	2.1	47
218	Exploring the brain's structural connectome: A quantitative stroke lesionâ€dysfunction mapping study. Human Brain Mapping, 2015, 36, 2147-2160.	3.6	47
219	Global Cerebral Vasodilatation Elicited by Focal Electrical Stimulation within the Dorsal Medullary Reticular Formation in Anesthetized Rat. Journal of Cerebral Blood Flow and Metabolism, 1983, 3, 270-279.	4.3	46
220	Risk of Arterial Ischemic Events After Intracerebral Hemorrhage. Stroke, 2020, 51, 137-142.	2.0	46
221	Superoxide-dependent cerebrovascular effects of homocysteine. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R1704-R1711.	1.8	45
222	Brain and Circulating Levels of AÎ 2 1â $^{\circ}$ 40 Differentially Contribute to Vasomotor Dysfunction in the Mouse Brain. Stroke, 2013, 44, 198-204.	2.0	45
223	Spreading Depolarization. Archives of Neurology, 2011, 68, 31-6.	4.5	44
224	Predicting Future Brain Tissue Loss From White Matter Connectivity Disruption in Ischemic Stroke. Stroke, 2014, 45, 717-722.	2.0	44
225	Dichotomous Effects of Chronic Intermittent Hypoxia on Focal Cerebral Ischemic Injury. Stroke, 2014, 45, 1460-1467.	2.0	44
226	Reclassification of Ischemic Stroke Etiological Subtypes on the Basis of High-Risk Nonstenosing Carotid Plaque. Stroke, 2020, 51, 504-510.	2.0	44
227	Stimulation of C1 Area Neurons Globally Increases Regional Cerebral Blood Flow but Not Metabolism. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 844-855.	4.3	43
228	l-Arginine increases ischemic injury in wild-type mice but not in iNOS-deficient mice. Brain Research, 2003, 966, 308-311.	2.2	42
229	iNOS-Derived NO and Nox2-Derived Superoxide Confer Tolerance to Excitotoxic Brain Injury through Peroxynitrite. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1453-1462.	4.3	42
230	Estrous Cycle–Dependent Neurovascular Dysfunction Induced by Angiotensin II in the Mouse Neocortex. Hypertension, 2009, 54, 302-307.	2.7	42
231	Association Between Nonstenosing Carotid Artery Plaque on MR Angiography and Acute Ischemic Stroke. JACC: Cardiovascular Imaging, 2016, 9, 1228-1229.	5.3	42
232	Vascular and Metabolic Factors in Alzheimer's Disease and Related Dementias: Introduction. Cellular and Molecular Neurobiology, 2016, 36, 151-154.	3.3	42
233	Heat shock proteins and p53 play a critical role in K+ channel-mediated tumor cell proliferation and apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 1837-1846.	4.9	41
234	Peroxiredoxin sets the brain on fire after stroke. Nature Medicine, 2012, 18, 858-859.	30.7	41

#	Article	IF	Citations
235	Liver Fibrosis Indices and Outcomes After Primary Intracerebral Hemorrhage. Stroke, 2020, 51, 830-837.	2.0	41
236	Prohibitin levels regulate OMA1 activity and turnover in neurons. Cell Death and Differentiation, 2020, 27, 1896-1906.	11.2	41
237	Stimulation of the Fastigial Nucleus Enhances EEG Recovery and Reduces Tissue Damage after Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 962-970.	4.3	40
238	Membrane Trafficking of NADPH Oxidase p47 ^{phox} in Paraventricular Hypothalamic Neurons Parallels Local Free Radical Production in Angiotensin II Slow-Pressor Hypertension. Journal of Neuroscience, 2013, 33, 4308-4316.	3.6	40
239	Dangerous Leaks: Blood-Brain Barrier Woes in the Aging Hippocampus. Neuron, 2015, 85, 231-233.	8.1	39
240	NMDA Receptor Plasticity in the Hypothalamic Paraventricular Nucleus Contributes to the Elevated Blood Pressure Produced by Angiotensin II. Journal of Neuroscience, 2015, 35, 9558-9567.	3.6	39
241	Lesions of rostral ventrolateral medulla abolish some cardio- and cerebrovascular components of the cerebellar fastigial pressor and depressor responses. Brain Research, 1990, 508, 93-104.	2.2	38
242	A Pooled Analysis of Diffusion-Weighted Imaging Lesions in Patients With Acute Intracerebral Hemorrhage. JAMA Neurology, 2020, 77, 1390.	9.0	38
243	Adipocyte-derived factors in age-related dementia and their contribution to vascular and Alzheimer pathology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 966-974.	3.8	37
244	Population-Based Assessment of the Long-Term Risk of Seizures in Survivors of Stroke. Stroke, 2018, 49, 1319-1324.	2.0	37
245	Estrogen receptor beta modulates permeability transition in brain mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 423-433.	1.0	37
246	Fastigial Stimulation Increases Ischemic Blood Flow and Reduces Brain Damage after Focal Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1993, 13, 1013-1019.	4.3	36
247	Lipopolysaccharide Induces Early Tolerance to Excitotoxicity via Nitric Oxide and cGMP. Stroke, 2007, 38, 2812-2817.	2.0	36
248	New generations of dihydropyridines for treatment of hypertension. Journal of Geriatric Cardiology, 2017, 14, 67-72.	0.2	36
249	Atherosclerosis and Neurodegeneration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1951-1953.	2.4	35
250	SUMO2/3 is Associated with Ubiquitinated Protein Aggregates in the Mouse Neocortex after Middle Cerebral Artery Occlusion. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1-5.	4.3	35
251	New diagnosis of cancer and the risk of subsequent cerebrovascular events. Neurology, 2018, 90, e2025-e2033.	1.1	35
252	Muscarinic cholinergic receptors mediate the cerebrovasodilation elicited by stimulation of the cerebellar fastigial nucleus in rat. Brain Research, 1986, 368, 375-379.	2.2	34

#	Article	IF	Citations
253	Stroke affects intestinal immune cell trafficking to the central nervous system. Brain, Behavior, and Immunity, 2021, 96, 295-302.	4.1	34
254	Recommendations of the National Heart, Lung, and Blood Institute Working Group on Cerebrovascular Biology and Disease. Stroke, 2006, 37, 1578-1581.	2.0	33
255	COX-1-derived PGE2 and PGE2 type 1 receptors are vital for angiotensin II-induced formation of reactive oxygen species and Ca2+ influx in the subfornical organ. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1451-H1461.	3.2	33
256	Slowâ€pressor angiotensin II hypertension and concomitant dendritic NMDA receptor trafficking in estrogen receptor l²â€"containing neurons of the mouse hypothalamic paraventricular nucleus are sex and age dependent. Journal of Comparative Neurology, 2014, 522, 3075-3090.	1.6	33
257	tPA Deficiency Underlies Neurovascular Coupling Dysfunction by Amyloid-β. Journal of Neuroscience, 2020, 40, 8160-8173.	3.6	33
258	Global reduction in cerebral blood flow and metabolism elicited from intrinsic neurons of fastigial nucleus. Brain Research, 1989, 500, 177-192.	2.2	32
259	Prohibitin Viral Gene Transfer Protects Hippocampal CA1 Neurons From Ischemia and Ameliorates Postischemic Hippocampal Dysfunction. Stroke, 2014, 45, 1131-1138.	2.0	32
260	Amyloid-Beta Modulates Low-Threshold Activated Voltage-Gated L-Type Calcium Channels of Arcuate Neuropeptide Y Neurons Leading to Calcium Dysregulation and Hypothalamic Dysfunction. Journal of Neuroscience, 2019, 39, 8816-8825.	3.6	32
261	Association Between Intracerebral Hemorrhage and Subsequent Arterial Ischemic Events in Participants From 4 Population-Based Cohort Studies. JAMA Neurology, 2021, 78, 809.	9.0	32
262	Lesions of the rostral ventrolateral medulla reduce the cerebrovascular response to hypoxia. Brain Research, 1994, 635, 217-223.	2.2	31
263	Prostaglandin E ₂ Type 1 Receptors Contribute to Neuronal Apoptosis after Transient Forebrain Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1207-1214.	4.3	31
264	Rates of Spinal Cord Infarction After Repair of Aortic Aneurysm or Dissection. Stroke, 2017, 48, 2073-2077.	2.0	31
265	Prohibitin is a positive modulator of mitochondrial function in <scp>PC</scp> 12 cells under oxidative stress. Journal of Neurochemistry, 2018, 146, 235-250.	3.9	31
266	Mechanisms of Ischemic Stroke in Patients with Cancer: A Prospective Study. Annals of Neurology, 2021, 90, 159-169.	5.3	31
267	Subcellular localization of nicotinamide adenine dinucleotide phosphate oxidase subunits in neurons and astroglia of the rat medial nucleus tractus solitarius: Relationship with tyrosine hydroxylase immunoreactive neurons. Neuroscience, 2006, 143, 547-564.	2.3	30
268	Sex differences in angiotensin signaling in bulbospinal neurons in the rat rostral ventrolateral medulla. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1149-R1157.	1.8	30
269	Female protection from slowâ€pressor effects of angiotensin II involves prevention of ROS production independent of NMDA receptor trafficking in hypothalamic neurons expressing angiotensin 1A receptors. Synapse, 2015, 69, 148-165.	1.2	30
270	Duration of Heightened Ischemic Stroke Risk After Acute Myocardial Infarction. Journal of the American Heart Association, 2018, 7, e010782.	3.7	30

#	Article	IF	Citations
271	Machine Learning Prediction of Stroke Mechanism in Embolic Strokes of Undetermined Source. Stroke, 2020, 51, e203-e210.	2.0	30
272	Purinergic Signaling Induces Cyclooxygenase-1-Dependent Prostanoid Synthesis in Microglia: Roles in the Outcome of Excitotoxic Brain Injury. PLoS ONE, 2011, 6, e25916.	2.5	30
273	Detection of Symptomatic Carotid Plaque Using Source Data from MR and CT Angiography: A Correlative Study. Cerebrovascular Diseases, 2015, 39, 151-161.	1.7	28
274	Bleeding in the brain: Killer waves of depolarization in subarachnoid bleed. Nature Medicine, 2009, 15, 1131-1132.	30.7	27
275	Angiotensin II type 2 receptors have a major somatodendritic distribution in vasopressin-containing neurons in the mouse hypothalamic paraventricular nucleus. Neuroscience, 2009, 163, 129-142.	2.3	27
276	Mitochondria are involved in the neurogenic neuroprotection conferred by stimulation of cerebellar fastigial nucleus. Journal of Neurochemistry, 2005, 95, 221-229.	3.9	26
277	The ubiquitin ligase HERC3 attenuates NF-κB-dependent transcription independently of its enzymatic activity by delivering the RelA subunit for degradation. Nucleic Acids Research, 2015, 43, gkv1064.	14.5	26
278	Association Between Troponin Levels and Embolic Stroke of Undetermined Source. Journal of the American Heart Association, 2017, 6, .	3.7	26
279	Association Between Unrecognized Myocardial Infarction and Cerebral Infarction on Magnetic Resonance Imaging. JAMA Neurology, 2019, 76, 956.	9.0	26
280	Focal elevations in neocortical interstitial K+ produced by stimulation of the fastigial nucleus in rat. Brain Research, 1991, 563, 273-277.	2.2	25
281	Interferon regulatory factor-1 immunoreactivity in neurons and inflammatory cells following ischemic stroke in rodents and humans. Acta Neuropathologica, 2003, 105, 420-424.	7.7	25
282	Stroke: Working toward a Prioritized World Agenda. Cerebrovascular Diseases, 2010, 30, 127-147.	1.7	25
283	Lipoprotein Receptor–Related Protein-6 Protects the Brain From Ischemic Injury. Stroke, 2013, 44, 2284-2291.	2.0	25
284	Susceptibility to Cell Death Induced by Mutant SV40 T-Antigen Correlates with Purkinje Neuron Functional Development. Molecular and Cellular Neurosciences, 1997, 9, 42-62.	2.2	24
285	Monoubiquitination of nuclear RelA negatively regulates NF-κB activity independent of proteasomal degradation. Cellular and Molecular Life Sciences, 2012, 69, 2057-2073.	5.4	23
286	Cryptogenic Stroke and Nonstenosing Intracranial Calcified Atherosclerosis. Journal of Stroke and Cerebrovascular Diseases, 2017, 26, 863-870.	1.6	23
287	Farnesyl transferase inhibitors induce neuroprotection by inhibiting Haâ€Ras signalling pathway. European Journal of Neuroscience, 2007, 26, 3261-3266.	2.6	22
288	Diagnostic yield of echocardiography in cancer patients with ischemic stroke. Journal of Neuro-Oncology, 2015, 123, 115-121.	2.9	22

#	Article	IF	Citations
289	Redistribution of NMDA Receptors in Estrogen-Receptor-β-Containing Paraventricular Hypothalamic Neurons following Slow-Pressor Angiotensin II Hypertension in Female Mice with Accelerated Ovarian Failure. Neuroendocrinology, 2017, 104, 239-256.	2.5	22
290	Plasma lipocalinâ€2 levels in the preclinical stage of Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 646-653.	2.4	22
291	Testosterone production in mice lacking inducible nitric oxide synthase expression is sensitive to restraint stress. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E615-E620.	3.5	21
292	Cellular and subcellular localization of androgen receptor immunoreactivity relative to C1 adrenergic neurons in the rostral ventrolateral medulla of male and female rats. Synapse, 2007, 61, 268-278.	1.2	21
293	Angiotensin II type 2 receptor-coupled nitric oxide production modulates free radical availability and voltage-gated Ca2+ currents in NTS neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1076-R1083.	1.8	21
294	Sugar and Alzheimer's disease: a bittersweet truth. Nature Neuroscience, 2015, 18, 477-478.	14.8	21
295	Sex differences in NMDA GluN1 plasticity in rostral ventrolateral medulla neurons containing corticotropin-releasing factor type 1 receptor following slow-pressor angiotensin II hypertension. Neuroscience, 2015, 307, 83-97.	2.3	21
296	Rescuing troubled vessels in Alzheimer disease. Nature Medicine, 2005, 11, 923-924.	30.7	20
297	Angiotensin II-induced hypertension differentially affects estrogen and progestin receptors in central autonomic regulatory areas of female rats. Experimental Neurology, 2008, 212, 393-406.	4.1	20
298	Intracerebral Hemorrhage Outcomes in Patients with Systemic Cancer. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 2918-2924.	1.6	20
299	AGO CLIP Reveals an Activated Network for Acute Regulation of Brain Glutamate Homeostasis in Ischemic Stroke. Cell Reports, 2019, 28, 979-991.e6.	6.4	20
300	Dissociation by Chloralose of the Cardiovascular and Cerebrovascular Responses Evoked from the Cerebellar Fastigial Nucleus. Journal of Cerebral Blood Flow and Metabolism, 1990, 10, 375-382.	4.3	18
301	Angiotensin II AT-1A receptor immunolabeling in rat medial nucleus tractus solitarius neurons: Subcellular targeting and relationships with catecholamines. Neuroscience, 2005, 130, 713-723.	2.3	17
302	Untangling Neurons With Endothelial Nitric Oxide. Circulation Research, 2016, 119, 1052-1054.	4.5	17
303	Revisiting atherosclerosis and dementia. Nature Neuroscience, 2020, 23, 691-692.	14.8	17
304	Trends in Active Cigarette Smoking Among Stroke Survivors in the United States, 1999 to 2018. Stroke, 2020, 51, 1656-1661.	2.0	17
305	Role of microglial and endothelial CD36 in post-ischemic inflammasome activation and interleukin- $1\hat{l}^2$ -induced endothelial activation. Brain, Behavior, and Immunity, 2021, 95, 489-501.	4.1	17
306	The link between angiotensin II-mediated anxiety and mood disorders with NADPH oxidase-induced oxidative stress. International Journal of Physiology, Pathophysiology and Pharmacology, 2012, 4, 28-35.	0.8	17

#	Article	IF	CITATIONS
307	Changes in the subcellular distribution of NADPH oxidase subunit p47phox in dendrites of rat dorsomedial nucleus tractus solitarius neurons in response to chronic administration of hypertensive agents. Experimental Neurology, 2007, 205, 383-395.	4.1	16
308	Neurovascular protection by ischaemic tolerance: role of nitric oxide. Journal of Physiology, 2011, 589, 4137-4145.	2.9	16
309	Commentary on Myers et al.: Growing role of the innate immunity receptor CD36 in central nervous system diseases. Experimental Neurology, 2014, 261, 633-637.	4.1	16
310	Recent progress in translational research on neurovascular and neurodegenerative disorders. Restorative Neurology and Neuroscience, 2017, 35, 87-103.	0.7	16
311	Diffusion-Weighted Imaging Lesions After Intracerebral Hemorrhage and Risk of Stroke. Stroke, 2021, 52, 595-602.	2.0	15
312	Attenuation of activity-induced increases in cerebellar blood flow by lesion of the inferior olive. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1177-H1182.	3.2	14
313	Introduction. Stroke, 2010, 41, S127-S128.	2.0	14
314	Prohibitin S-Nitrosylation Is Required for the Neuroprotective Effect of Nitric Oxide in Neuronal Cultures. Journal of Neuroscience, 2020, 40, 3142-3151.	3.6	14
315	The scavenger receptor CD36 contributes to the neurotoxicity of bone marrow-derived monocytes through peroxynitrite production. Neurobiology of Disease, 2011, 42, 292-299.	4.4	13
316	Neuronal expression of the mitochondrial protein prohibitin confers profound neuroprotection in a mouse model of focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1010-1020.	4.3	13
317	Special topic section: linkages among cerebrovascular, cardiovascular, and cognitive disorders: Preventing dementia by preventing stroke: The Berlin Manifesto. International Journal of Stroke, 2019, , 174749301987191.	5.9	13
318	The risk of arterial thromboembolic events after cancer diagnosis. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 639-651.	2.3	13
319	Short-Term Risk of Ischemic Stroke After Detection of Left Ventricular Thrombus on Cardiac Magnetic Resonance Imaging. Journal of Stroke and Cerebrovascular Diseases, 2019, 28, 1027-1031.	1.6	13
320	Non-Traumatic Subdural Hemorrhage and Risk of Arterial Ischemic Events. Stroke, 2020, 51, 1464-1469.	2.0	13
321	Mechanisms of Cerebral Ischemic Damage. , 1999, , 3-32.		13
322	Plasma epinephrine modulates the cerebrovasodilation evoked by electrical stimulation of dorsal medulla. Brain Research, 1990, 506, 93-100.	2.2	12
323	[39] Nitric oxide synthase expression in cerebral ischemia: Neurochemical, immunocytochemical, and molecular approaches. Methods in Enzymology, 1996, 269, 408-426.	1.0	12
324	The Science of Stroke: Mechanisms in Search of Treatments. Neuron, 2010, 68, 161.	8.1	12

#	Article	IF	CITATIONS
325	Association between Intracranial Atherosclerotic Calcium Burden and Angiographic Luminal Stenosis Measurements. American Journal of Neuroradiology, 2017, 38, 1723-1729.	2.4	12
326	Association Between Heart Transplantation and Subsequent Risk of Stroke Among Patients With Heart Failure. Stroke, 2019, 50, 583-587.	2.0	12
327	Hypoxia Inducible Factor- $1\hat{l}\pm$ binds and activates \hat{l}^3 -secretase for $A\hat{l}^2$ production under hypoxia and cerebral hypoperfusion. Molecular Psychiatry, 2022, 27, 4264-4273.	7.9	12
328	Ultrastructural localization of extranuclear progestin receptors relative to C1 neurons in the rostral ventrolateral medulla. Neuroscience Letters, 2008, 431, 167-172.	2.1	11
329	Alterations in the subcellular distribution of NADPH oxidase p47 ^{phox} in hypothalamic paraventricular neurons following slowâ€pressor angiotensin II hypertension in female mice with accelerated ovarian failure. Journal of Comparative Neurology, 2016, 524, 2251-2265.	1.6	11
330	Retinol Binding Protein 4 Levels Are Not Altered in Preclinical Alzheimer's Disease and Not Associated with Cognitive Decline or Incident Dementia. Journal of Alzheimer's Disease, 2019, 67, 257-263.	2.6	11
331	Cerebral Ischemia and Inflammation. , 2004, , 883-893.		11
332	Vascular Cognitive Impairment: Small Vessels, Big Toll. Stroke, 2009, 40, S38-9.	2.0	10
333	Normal Responses to Restraint Stress in Mice Lacking the Gene for Neuronal Nitric Oxide Synthase. Journal of Andrology, 2009, 30, 614-620.	2.0	10
334	Cancer-Related Ischemic Stroke Has a Distinct Blood mRNA Expression Profile. Stroke, 2019, 50, 3259-3264.	2.0	10
335	Local and remote microvascular changes in excitotoxin-induced focal brain lesions. Brain Research, 1989, 501, 188-193.	2,2	9
336	Astrocytes Take Center Stage in Salt Sensing. Neuron, 2007, 54, 3-5.	8.1	9
337	Maintenance of local cerebral blood flow after acute neuronal death: Possible role of non-neuronal cells. Neuroscience, 1990, 35, 559-575.	2.3	8
338	Cyclooxygenaseâ€⊋ and stroke: The long and short of it. Annals of Neurology, 2003, 54, 141-142.	5.3	8
339	Vascular Cognitive Impairment: Introduction. Stroke, 2004, 35, 2615-2615.	2.0	8
340	Plasma Membrane Affiliated AMPA GluA1 in Estrogen Receptor \hat{l}^2 -containing Paraventricular Hypothalamic Neurons Increases Following Hypertension in a Mouse Model of Post-menopause. Neuroscience, 2019, 423, 192-205.	2.3	8
341	Early postnatal exposure to methylphenidate alters stress reactivity and increases hippocampal ectopic granule cells in adult rats. Brain Research Bulletin, 2009, 78, 175-181.	3.0	7
342	Blood Pressure Ups and Downs Foreshadow Cerebral Microangiopathy. Journal of the American College of Cardiology, 2020, 75, 2400-2402.	2.8	7

#	Article	IF	Citations
343	Elevated post-ischemic ubiquitination results from suppression of deubiquitinase activity and not proteasome inhibition. Cellular and Molecular Life Sciences, 2021, 78, 2169-2183.	5.4	7
344	Amyloid \hat{l}^2 -Related Central Nervous System Angiitis Presenting With an Isolated Seizure. Neurohospitalist, The, 2014, 4, 86-89.	0.8	6
345	Introduction to the Stroke Compendium. Circulation Research, 2017, 120, 437-438.	4.5	6
346	Principles and Methods for Measurement of Cerebral Blood Flow., 1997,, 34-37.		6
347	Framingham General Cardiovascular Risk Score and Cognitive Impairment. Journal of the American College of Cardiology, 2020, 75, 2535-2537.	2.8	6
348	Bone marrow spawns brain killers. Nature Medicine, 2004, 10, 1044-1045.	30.7	5
349	Balancing Life and Death in the Ischemic Brain: SIK and TORC Weigh In. Neuron, 2011, 69, 3-6.	8.1	5
350	Risk of Intracerebral Hemorrhage after Emergency Department Discharges for Hypertension. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 1683-1687.	1.6	5
351	Reply. Journal of the American College of Cardiology, 2018, 71, 260-262.	2.8	5
352	Ablation of nasal-associated lymphoid tissue does not affect focal ischemic brain injury in mice. PLoS ONE, 2018, 13, e0205470.	2.5	5
353	Statins and Cognitive Impairment. Journal of the American College of Cardiology, 2019, 74, 2569-2571.	2.8	5
354	Cerebellar vascular and synaptic responses in normal mice and in transgenics with Purkinje cell dysfunction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R529-R540.	1.8	4
355	Cerebral Ischemia and Inflammation. , 2011, , 138-153.		3
356	Rollercoaster Blood Pressure. Circulation, 2017, 136, 526-528.	1.6	3
357	The Role of Nitric Oxide in Cerebrovascular Regulation and Stroke. , 1999, , 207-231.		3
358	The Microcircualtionâ€"Fantastic Voyage: Introduction. Stroke, 2013, 44, S83.	2.0	2
359	Inflammation and Immune Response. , 2022, , 117-128.e5.		2
360	Abstract 149: CD36 in Perivascular Macrophages Contributes to Neurovascular and Cognitive Dysfunction and Amyloid Angiopathy in Mice Overexpressing the Alzheimer A \hat{l}^2 Peptide. Stroke, 2018, 49, .	2.0	2

#	Article	IF	CITATIONS
361	Ischaemic intermittent claudication of the masticatory muscles: two case reports. Neurological Sciences, 1979, 1, 269-274.	1.9	1
362	Interaction between inducible nitric oxide and cyclooxygenase-2 in ischemic brain injury., 2002, , 47-57.		1
363	MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. Journal of Cell Biology, 2007, 178, i12-i12.	5.2	1
364	Pharmacological Neuroprotection in Stroke: Rationale, State-of-the-art and Future Directions. Current Neuropharmacology, 2004, 2, 265-276.	2.9	1
365	Prostaglandin E2 (PGE2) Type 1 Receptors (EP1R) in the Subfornical Organ (SFO) Contribute to Slowâ€Pressor Angll Sympathoexcitation and Hypertension (HTN) via NADPH Oxidase (Nox)â€Dependent Signaling. FASEB Journal, 2010, 24, 1049.1.	0.5	1
366	Abstract 121: Machine Learning Prediction of Stroke Mechanism in Embolic Strokes of Undetermined Source. Stroke, 2019, 50, .	2.0	1
367	Difference in cardiovascular characteristic of vasopressor responses elicited from the cerebellar fastigial nucleus (FN) and the C1 area of the rostral ventrolateral medulla (RVL) in rats. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1989, 9, 38.	0.0	O
368	Neurovascular coupling in health and disease: lessons from transgenic mice. International Congress Series, 2002, 1235, 259-266.	0.2	0
369	Reply to: Mannose-binding lectin—the forgotten molecule?. Nature Medicine, 2011, 17, 1548-1548.	30.7	O
370	Bo K. Siesjö, MD, PhD. Stroke, 2013, 44, 2985-2986.	2.0	0
371	Angiophagy: Clearing or Clogging Microvessels?. Science Translational Medicine, 2014, 6, 226fs10.	12.4	O
372	FTS3-01-01: Biological Underpinnings of Vascular Contributions to Dementia. , 2016, 12, P276-P276.		0
373	F3â€01â€01: The Pathobiology of Vascular Cognitive Impairment and Dementia (VCID): Focus on Hypertension. Alzheimer's and Dementia, 2016, 12, P269.	0.8	O
374	Inflammation and Immune Response. , 2016, , 129-140.e5.		0
375	Richard Joel Traystman, PhD. Stroke, 2018, 49, 271-272.	2.0	O
376	O2â€12â€04: STALLED BLOOD FLOW IN BRAIN CAPILLARIES IS RESPONSIBLE FOR REDUCED CORTICAL PERFUSION AND IMPACTS COGNITIVE FUNCTION IN MOUSE MODELS OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P651.	ON 0.8	0
377	F4â€04â€01: HYPERTENSIVE CEREBRAL MICROANGIOPATHY AND ALZHEIMER PATHOLOGY: SMALL VESSELS, BIG TOLLS. Alzheimer's and Dementia, 2018, 14, P1387.	0.8	O
378	S3â€01â€01: ALZHEIMER'S AND VASCULAR DISEASE: A PATHOBIOLOGICAL PERSPECTIVE. Alzheimer's and Dementia, 2019, 15, P862.	0.8	0

#	Article	IF	Citations
379	A Novel Neurovascular Liaison Governing the Blood-Brain Barrier. Neuron, 2020, 107, 205-207.	8.1	0
380	Abstract P745: Whole Blood MicroRNA and Their Target Messenger RNA Reveal Distinct Transcriptional Changes in Ischemic Stroke Patients With and Without Comorbid Cancer. Stroke, 2021, 52, .	2.0	0
381	Role of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 in the Mechanisms of Ischemic Brain Injury. , 2001, , 98-107.		0
382	EP1 receptors are responsible for COX-2 mediated neurotoxicity. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S424-S424.	4.3	0
383	Femtosecond Laser-Induced Microvascular Clots Trigger Alzheimer's Disease Pathology. , 2008, , .		0
384	Activation of angiotensin II (AngII) typeâ€2 receptors (AT2R) modulates voltageâ€gated Ca2+ currents in dorsomedial NTS (dmNTS) neurons through nitric oxide (NO). FASEB Journal, 2008, 22, 1168.7.	0.5	0
385	Prostaglandin E2 type†(EP1) receptors are required for the cerebrovascular dysfunction induced by angiotensin II (AngII). FASEB Journal, 2008, 22, 1237.2.	0.5	0
386	Cyclooxygenase (COX)â€1 derived prostaglandin E2 (PGE2) acting on its type 1 receptor (EP1R) mediates slowâ€pressor angiotensinâ€II (AngII) hypertension. FASEB Journal, 2009, 23, 802.2.	0.5	0
387	Slowâ€pressor angiotensin II (AngII)â€dependent hypertension (HTN) requires prostaglandin E2 (PGE2) type 1 receptors (EP1R) and superoxide (O2·â€) signaling. FASEB Journal, 2009, 23, 802.6.	0.5	0
388	Chronic intermittent hypoxia (CIH) disrupts neurovascular coupling and endothelium dependent responses in the mouse cerebral microcirculation. FASEB Journal, 2009, 23, 993.4.	0.5	0
389	Phospholipases A2 (PLA2) and cyclooxygenase 1 (COXâ€1) are critical for angiotensin II (Angâ€II)â€induced reactive oxygen species (ROS) production and Lâ€type Ca2+ current in subfornical organ (SFO) neurons. FASEB Journal, 2012, 26, .	0.5	0
390	Angiotensin II (ANG II) slow pressor hypertension enhances NMDA receptor (NMDAR)â€mediated currents and Nox2â€dependent superoxide (O2â€) production in spinallyâ€projecting (SP) neurons of hypothalamic paraventricular nucleus (PVN). FASEB Journal, 2013, 27, 695.5.	0.5	0
391	Mitochondrial morphological changes and electron transport chain (ETC) uncoupling induced by Angiotensin II (Ang II) in neuronal cells of the subfornical organ (SFO) and cultured neural cells. FASEB Journal, 2013, 27, lb846.	0.5	0
392	Angiotensinâ€II (AngII) hypertension aggravates neurovascular dysfunction in mouse models of Alzheimer's disease (AD). FASEB Journal, 2013, 27, 709.12.	0.5	0
393	Endoplasmic reticulum stress is upstream of angiotensinâ€II (Angâ€II)â€Induced reactive oxygen species (ROS) formation in the subfornical organ (SFO). FASEB Journal, 2013, 27, 906.15.	0.5	0
394	Risk of arterial thromboembolism in patients with colorectal cancer Journal of Clinical Oncology, 2016, 34, 1572-1572.	1.6	0
395	Two-Photon Imaging Reveals Capillary Occlusions are Responsible for Reduced Brain Blood Flow and Cognitive Decline in Alzheimer's Disease Mouse Models. , 2017, , .		0
396	Abstract TP72: Pilot Trial of Enoxaparin versus Aspirin in Cancer Patients with Stroke: the TEACH Study. Stroke, 2017, 48, .	2.0	0

#	Article	IF	CITATIONS
397	Abstract WP419: Long-term Risk of Complications after Endovascular Closure of Patent Foramen Ovale. Stroke, 2017, 48, .	2.0	O
398	Abstract TMP110: Outcomes After Intracerebral Hemorrhage in Patients With Arteriovenous Malformations. Stroke, 2017, 48, .	2.0	0
399	Abstract TP108: Association Between Intracranial Atherosclerotic Calcium Burden and Angiographic Luminal Stenosis Measurements. Stroke, 2017, 48, .	2.0	O
400	Abstract 31: CaMKII-alpha Ubiquitination Induced by Cerebral Ischemia-Reperfusion Injury Reversibly Inhibits Post-Ischemic CaMKII Activity at the Post-Synaptic Density. Stroke, 2018, 49, .	2.0	0
401	Abstract TMP94: Dietary Salt Impairs Cognitive Function Through Suppression of Endothelial Nitric Oxide Synthesis and Hippocampal BDNF Signaling. Stroke, 2018, 49, .	2.0	0
402	Abstract WMP76: Post-Ischemic Accumulation of Ubiquitinated Proteins Induced by Free Radicals and Proteasomal Inhibition Promotes Cell Survival. Stroke, 2018, 49, .	2.0	0
403	Abstract 101: ApoE4 Disrupts Cerebrovascular Microcirculation and Undermines White Matter Integrity and Cognitive Function. Stroke, 2019, 50, .	2.0	0
404	Abstract WMP53: New Diagnosis of Cancer and the Risk of Subsequent Arterial Thromboembolic Events. Stroke, 2019, 50, .	2.0	0
405	Abstract WP522: Catheter Ablation of Atrial Fibrillation and Long-Term Cardiovascular Outcomes. Stroke, 2019, 50, .	2.0	0
406	Abstract WMP111: Trends in Active Tobacco Smoking Among Stroke Survivors in The United States: An Analysis of the National Health and Nutrition Examination Survey, 1999-2016. Stroke, 2020, 51, .	2.0	0
407	Abstract WMP110: Cerebral Ischemia-Reperfusion Alters Postsynaptic Kinase Activities Through Ubiquitination. Stroke, 2022, 53, .	2.0	0
408	Abstract WP17: Impact Of Cigarette Smoking And Its Interaction With Hypertension And Diabetes On Cognitive Function. Stroke, 2022, 53, .	2.0	0
409	Abstract TMP13: Risk Stratification Models For Stroke In Patients Hospitalized With Covid-19 Infection: An American Heart Association Covid-19 CVD Registry Study. Stroke, 2022, 53, .	2.0	0
410	Introduction to the Compendium on Stroke and Neurocognitive Impairment. Circulation Research, 2022, 130, 1073-1074.	4.5	0
411	L-type calcium channel subtypes mediating hypothalamic dysfunction caused by amyloid-beta Alzheimer's and Dementia, 2021, 17 Suppl 3, e054920.	0.8	0
412	When the BBB goes MIA. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2204159119.	7.1	0