Eduardo Diez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2296777/publications.pdf Version: 2024-02-01

EDUARDO DIEZ

#	Article	IF	CITATIONS
1	Mesoporous low silica X (MLSX) zeolite: Mesoporosity in loewenstein limit?. Microporous and Mesoporous Materials, 2022, 330, 111618.	2.2	Ο
2	TG and DSC as tools to analyse the thermal behaviour of EVA copolymers. Journal of Elastomers and Plastics, 2021, 53, 792-805.	0.7	8
3	Recovery of Gallium from Aqueous Solution through Preconcentration by Adsorption/Desorption on Disordered Mesoporous Carbon. Journal of Sustainable Metallurgy, 2021, 7, 227-242.	1.1	7
4	Deoxygenation of methyl laurate: influence of cation and mesoporosity in fau zeolites. Journal of Porous Materials, 2021, 28, 1355-1360.	1.3	1
5	H-Clinoptilolite as an Efficient and Low-Cost Adsorbent for Batch and Continuous Gallium Removal from Aqueous Solutions. Journal of Sustainable Metallurgy, 2021, 7, 1699-1716.	1.1	7
6	A new mesoporous activated carbon as potential adsorbent for effective indium removal from aqueous solutions. Microporous and Mesoporous Materials, 2020, 295, 109984.	2.2	28
7	Characterization of a natural zeolite with inverse gas chromatography to assess its feasibility as adsorbent. Environmental Progress and Sustainable Energy, 2020, 39, e13412.	1.3	2
8	Catching the Attention of Generation Z Chemical Engineering Students for Particle Technology. Journal of Formative Design in Learning, 2019, 3, 146-157.	0.7	4
9	Optimization and Adsorption-Based Recovery of Cobalt Using Activated Disordered Mesoporous Carbons. Advances in Materials Science and Engineering, 2019, 2019, 1-10.	1.0	11
10	Thermocatalytic deoxygenation of methyl laurate over potassium FAU zeolites. Microporous and Mesoporous Materials, 2019, 284, 122-127.	2.2	8
11	Highly efficient lowâ€cost zeolite for cobalt removal from aqueous solutions: Characterization and performance. Environmental Progress and Sustainable Energy, 2019, 38, S352.	1.3	22
12	Effective Adsorptive Removal of Cobalt Using Mesoporous Carbons Synthesized by Silica Gel Replica Method. Environmental Processes, 2018, 5, 225-242.	1.7	17
13	Synthesis of mesoporous X zeolite using an anionic surfactant as templating agent for thermo-catalytic deoxygenation. Microporous and Mesoporous Materials, 2018, 270, 220-226.	2.2	21
14	Bulk polymer/solvent interactions for polyethylene and EVA copolymers, below their melting temperatures. Polymer Bulletin, 2017, 74, 11-25.	1.7	5
15	Hansen solubility parameter: from polyethylene and poly(vinyl acetate) homopolymers to ethylene–vinyl acetate copolymers. Polymer International, 2017, 66, 1013-1020.	1.6	16
16	PC-SAFT thermodynamics of EVA copolymer – Solvent systems. Fluid Phase Equilibria, 2017, 449, 10-17.	1.4	6
17	Deoxygenation of m-toluic acid over hierarchical x zeolite. Catalysis Communications, 2016, 78, 55-58.	1.6	6
18	A new methodology to determine sorption curves from Flory Huggins parameters measured at solvent and polymer infinite dilution. European Polymer Journal, 2016, 82, 71-81.	2.6	4

Eduardo Diez

#	Article	IF	CITATIONS
19	Inverse gas chromatography study of polyvinylacetate–solvent and polyethylene–solvent systems. Polymer Engineering and Science, 2016, 56, 36-43.	1.5	4
20	Turbidimetric and intrinsic viscosity study of EVA copolymer–solvent systems. Polymer Bulletin, 2014, 71, 193-206.	1.7	15
21	Thermodynamic interactions of EVA copolymerâ€solvent systems by inverse gas chromatography measurements. Journal of Applied Polymer Science, 2013, 128, 481-486.	1.3	14
22	Distillation assisted heat pump in a trichlorosilane purification process. Chemical Engineering and Processing: Process Intensification, 2013, 69, 70-76.	1.8	13
23	Comparison between three predictive methods for the calculation of polymer solubility parameters. Fluid Phase Equilibria, 2013, 337, 6-10.	1.4	20
24	Immobilization of β-glucosidase in fixed bed reactor and evaluation of the enzymatic activity. Bioprocess and Biosystems Engineering, 2012, 35, 1399-1405.	1.7	24
25	Vapor–Liquid Equilibrium at p/kPa = 101.3 of the Binary Mixtures of Ethenyl Acetate with Methanol and Butan-1-ol. Journal of Chemical & Engineering Data, 2012, 57, 3198-3202.	1.0	3
26	Polymer–solvent interaction parameters of SBS rubbers by inverse gas chromatography measurements. Fluid Phase Equilibria, 2011, 308, 107-113.	1.4	23
27	Bentonite as an Alternative Adsorbent for the Purification of Styrene Monomer: Adsorption Kinetics, Equilibrium and Process Design. Adsorption Science and Technology, 2010, 28, 101-123.	1.5	3
28	Thermodynamic interactions of three SBS (styrene–butadiene–styrene) triblock copolymers with different solvents, by means of intrinsic viscosity measurements. European Polymer Journal, 2010, 46, 2261-2268.	2.6	14
29	Purification process design in the production of styrene monomer. Chemical Engineering and Processing: Process Intensification, 2010, 49, 367-375.	1.8	9
30	Feasibility of 1,3-butanediol as solvent for limonene and linalool separation. Chemical Engineering and Processing: Process Intensification, 2010, 49, 1183-1187.	1.8	10
31	SEBS triblock copolymer–solvent interaction parameters from inverse gas chromatography measurements. European Polymer Journal, 2009, 45, 590-594.	2.6	25
32	Economic feasibility of heat pumps in distillation to reduce energy use. Applied Thermal Engineering, 2009, 29, 1216-1223.	3.0	110
33	Thermodynamic Modeling and Simulation of Styreneâ^'Butadiene Rubbers (SBR) Solvent Equilibrium Staged Processes. Industrial & Engineering Chemistry Research, 2009, 48, 7713-7723.	1.8	12
34	Evaluation of (vapor+liquid) equilibria for the binary systems (1-octanol+cyclohexane) and (1-octanol+n-hexane), at low alcohol compositions. Journal of Chemical Thermodynamics, 2008, 40, 1617-1620.	1.0	2
35	Isobaric Vaporâ ^{~,} Liquid Equilibrium for the Binary Systems 1-Pentanol + Cyclohexane and 1-Pentanol + <i>n</i> -Hexane at Low Alcohol Compositions. Journal of Chemical & Engineering Data, 2007, 52, 1984-1987.	1.0	9
36	Solubility and Flory Huggins parameters of SBES, poly(styrene-b-butene/ethylene-b-styrene) triblock copolymer, determined by intrinsic viscosity. European Polymer Journal, 2007, 43, 1444-1449.	2.6	58