
Abhijit Mondal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2296572/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Response to comments on preclinical evaluation of a pediatric airway stent for tracheobronchomalacia. Journal of Thoracic and Cardiovascular Surgery, 2022, 163, e109.	0.4	3
2	Preclinical evaluation of a pediatric airway stent for tracheobronchomalacia. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, e51-e60.	0.4	6
3	In Vivo Molding of Airway Stents. Advanced Functional Materials, 2021, 31, 2010525.	7.8	6
4	Toward cardiac tissue characterization using machine learning and light-scattering spectroscopy. Journal of Biomedical Optics, 2021, 26, .	1.4	2
5	Pediatric Airway Stent Designed to Facilitate Mucus Transport and Atraumatic Removal. IEEE Transactions on Biomedical Engineering, 2020, 67, 177-184.	2.5	12
6	Toward detection of conduction tissue during cardiac surgery: Light at the end of the tunnel?. Heart Rhythm, 2020, 17, 2200-2207.	0.3	6
7	Localization of the sinoatrial and atrioventricular nodal region in neonatal and juvenile ovine hearts. PLoS ONE, 2020, 15, e0232618.	1.1	1
8	Intraoperative localization of cardiac conduction tissue regions using real-time fibre-optic confocal microscopy: first in human trial. European Journal of Cardio-thoracic Surgery, 2020, 58, 261-268.	0.6	7
9	Long-term Surgical Prognosis of Primary Supravalvular Aortic Stenosis Repair. Annals of Thoracic Surgery, 2019, 108, 1202-1209.	0.7	21
10	An Imaging Protocol to Discriminate Specialized Conduction Tissue During Congenital Heart Surgery. Seminars in Thoracic and Cardiovascular Surgery, 2019, 31, 537-546.	0.4	9
11	Computational simulations of asymmetric fluxes of large molecules through gap junction channel pores. Journal of Theoretical Biology, 2017, 412, 61-73.	0.8	10
12	Modulation of Asymmetric Flux in Heterotypic Gap Junctions by Pore Shape, Particle Size and Charge. Frontiers in Physiology, 2017, 8, 206.	1.3	3
13	PerFlexMEA: a thin microporous microelectrode array for in vitro cardiac electrophysiological studies on hetero-cellular bilayers with controlled gap junction communication. Lab on A Chip, 2015, 15, 2037-2048.	3.1	8
14	Brownian Permeability Computation Model Predicts That Differences inÂthe Internal Radii of the Pore are Determinant for Unidirectional and Reversal Fluxes through Gap Junction Channels. Biophysical Journal, 2012, 102, 106a.	0.2	0
15	Heteromultimeric Gap-Junction Channel Permeance: Directional Fluxes Simulated Using a Brownian Dynamics Model. Biophysical Journal, 2010, 98, 94a-95a.	0.2	2
16	Simulation Of Particle Diffusion Across Gap Junction Channels Based OnÂTheir Pore Geometry Explains Unidirectional Fluxes. Biophysical Journal, 2009, 96, 284a.	0.2	1