Yang Hou

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2296509/yang-hou-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65 15,428 120 224 h-index g-index citations papers 18,646 7.08 236 12 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
224	Binder free construction of hollow hierarchical MntoP nanoarrays on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. <i>Sustainable Energy and Fuels</i> , 2022 , 6, 851-860	5.8	O
223	Electrochemically exfoliated Ni-doped MoS2 nanosheets for highly efficient hydrogen evolution and Zn-H2O battery. <i>Chinese Chemical Letters</i> , 2022 ,	8.1	2
222	Tuning Two-Electron Oxygen-Reduction Pathways for H O Electrosynthesis via Engineering Atomically Dispersed Single Metal Site Catalysts <i>Advanced Materials</i> , 2022 , e2107954	24	10
221	Squid inspired elastomer marine coating with efficient antifouling strategies: Hydrophilized defensive surface and lower modulus <i>Colloids and Surfaces B: Biointerfaces</i> , 2022 , 213, 112392	6	3
220	Efficient production of lycopene from CO2 via microbial electrosynthesis. <i>Chemical Engineering Journal</i> , 2022 , 430, 132943	14.7	5
219	Layered bismuth oxide/bismuth sulfide supported on carrageenan derived carbon for efficient carbon dioxide electroreduction to formate. <i>Chinese Journal of Chemical Engineering</i> , 2022 , 43, 116-123	3.2	1
218	Local Spin-state Tuning of Iron Single-Atom Electrocatalyst by S-coordinated Doping for Kinetics-boosted Ammonia Synthesis <i>Advanced Materials</i> , 2022 , e2202240	24	10
217	Bridging heterogeneous and homogeneous catalysts by ultrathin metal-polyphthalocyanine-based nanosheets from electron-coupled transalkylation delamination. <i>Nano Energy</i> , 2022 , 98, 107297	17.1	0
216	A heterostructured ZnAl-LDH@ZIF-8 hybrid as a bifunctional photocatalyst/adsorbent for CO2 reduction under visible light irradiation. <i>Chemical Engineering Journal</i> , 2022 , 137003	14.7	1
215	Atomically Dispersed Zinc(I) Active Sites to Accelerate Nitrogen Reduction Kinetics for Ammonia Electrosynthesis. <i>Advanced Materials</i> , 2021 , e2103548	24	19
214	Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. <i>Chemical Society Reviews</i> , 2021 , 50, 12702-12743	58.5	32
213	Promoting CO2 Electroreduction Kinetics on Atomically Dispersed Monovalent Zn(I) Sites by Rationally Engineering Proton-feeding Centers. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	7
212	Enhanced photocatalytic CO-reduction activity to form CO and CH on S-scheme heterostructured ZnFeO/BiMoO photocatalyst. <i>Journal of Colloid and Interface Science</i> , 2021 ,	9.3	3
211	Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Single-Atomic Iron Sites. <i>Angewandte Chemie</i> , 2021 , 133, 9160-9167	3.6	8
210	Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Single-Atomic Iron Sites. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 9078-9085	16.4	60
209	Proton Capture Strategy for Enhancing Electrochemical CO2 Reduction on Atomically Dispersed Metal Nitrogen Active Sites**. <i>Angewandte Chemie</i> , 2021 , 133, 12066-12072	3.6	8
208	Alternating current enhanced bioremediation of petroleum hydrocarbon-contaminated soils. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 47562-47573	5.1	O

(2021-2021)

207	Proton Capture Strategy for Enhancing Electrochemical CO Reduction on Atomically Dispersed Metal-Nitrogen Active Sites*. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11959-11965	16.4	57
206	Bioelectrochemical sulfate reduction enhanced nitrogen removal from industrial wastewater containing ammonia and sulfate. <i>AICHE Journal</i> , 2021 , 67, e17309	3.6	2
205	Bioanode-driven CO2 electroreduction in a redox-medium-assisted system with high energy efficiency. <i>AICHE Journal</i> , 2021 , 67, e17283	3.6	0
204	Bimetallic Oxyhydroxide as a High-Performance Water Oxidation Electrocatalyst under Industry-Relevant Conditions. <i>Engineering</i> , 2021 , 7, 1306-1306	9.7	3
203	Comparative investigation of visible-light-induced benzene degradation on M-ferrite/hematite (MI=ICa, Mg, Zn) nanospheres by in situ FTIR: Intermediates and reaction mechanism. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 618, 126501	5.1	3
202	Deciphering Single-Bacterium Adhesion Behavior Modulated by Extracellular Electron Transfer. <i>Nano Letters</i> , 2021 , 21, 5105-5115	11.5	О
201	Thiophen-basierte konjugierte acetylenische Polymere mit dualen aktiven Zentren fileffiziente Cokatalysator-freie photoelektrochemische Wasserreduktion im alkalischen Medium. <i>Angewandte</i> <i>Chemie</i> , 2021 , 133, 19025-19031	3.6	О
200	A Self-Healable Polyelectrolyte Binder for Highly Stabilized Sulfur, Silicon, and Silicon Oxides Electrodes. <i>Advanced Functional Materials</i> , 2021 , 31, 2104433	15.6	8
199	Thiophene-Based Conjugated Acetylenic Polymers with Dual Active Sites for Efficient Co-Catalyst-Free Photoelectrochemical Water Reduction in Alkaline Medium. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 18876-18881	16.4	7
198	Interface coupling 2D/2D SnSe2/graphene heterostructure as long-cycle anode for all-climate lithium-ion battery. <i>Chemical Engineering Journal</i> , 2021 , 407, 126973	14.7	21
197	Graphene-modified graphite paper cathode for the efficient bioelectrochemical removal of chromium. <i>Chemical Engineering Journal</i> , 2021 , 405, 126545-126545	14.7	6
196	Thiophene-Bridged Donor-Acceptor sp -Carbon-Linked 2D Conjugated Polymers as Photocathodes for Water Reduction. <i>Advanced Materials</i> , 2021 , 33, e2006274	24	37
195	Dynamic Activation of Adsorbed Intermediates via Axial Traction for the Promoted Electrochemical CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4192-4198	16.4	75
194	Elucidation of the Synergistic Effect of Dopants and Vacancies on Promoted Selectivity for CO Electroreduction to Formate. <i>Advanced Materials</i> , 2021 , 33, e2005113	24	41
193	Dynamic Activation of Adsorbed Intermediates via Axial Traction for the Promoted Electrochemical CO2 Reduction. <i>Angewandte Chemie</i> , 2021 , 133, 4238-4244	3.6	10
192	An exfoliated iron phosphorus trisulfide nanosheet with rich sulfur vacancy for efficient dinitrogen fixation and Zn-N2 battery. <i>Nano Energy</i> , 2021 , 81, 105613	17.1	20
191	Facile synthesis of GO as middle carrier modified flower-like BiOBr and C3N4 nanosheets for simultaneous treatment of chromium(VI) and tetracycline. <i>Chinese Chemical Letters</i> , 2021 , 32, 2187-219	8.1	10
190	Efficient mineralization of sulfanilamide over oxygen vacancy-rich NiFe-LDH nanosheets array during electro-fenton process. <i>Chemosphere</i> , 2021 , 268, 129272	8.4	10

189	In situ identification of the electrocatalytic water oxidation behavior of a nickel-based metal-organic framework nanoarray. <i>Materials Horizons</i> , 2021 , 8, 556-564	14.4	31
188	Electrocatalysis for CO conversion: from fundamentals to value-added products. <i>Chemical Society Reviews</i> , 2021 , 50, 4993-5061	58.5	157
187	Solvent-mediated engineering of copper-metalated acetylenic polymer scaffolds with enhanced photoelectrochemical performance. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9729-9734	13	О
186	Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts. <i>Nano Research</i> , 2021 , 14, 3188-3207	10	25
185	Highly Boosted Reaction Kinetics in Carbon Dioxide Electroreduction by Surface-Introduced Electronegative Dopants. <i>Advanced Functional Materials</i> , 2021 , 31, 2008146	15.6	38
184	Hierarchical Cross-Linked Carbon Aerogels with Transition Metal-Nitrogen Sites for Highly Efficient Industrial-Level CO2 Electroreduction. <i>Advanced Functional Materials</i> , 2021 , 31, 2104377	15.6	20
183	Synergistic Effect of Atomically Dispersed Ni-Zn Pair Sites for Enhanced CO Electroreduction. <i>Advanced Materials</i> , 2021 , 33, e2102212	24	33
182	Highly Efficient Self-Repairing Slippery Liquid-Infused Surface with Promising Anti-Icing and Anti-Fouling Performance. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 40032-40041	9.5	14
181	An integrated bioelectrochemical system coupled CO2 electroreduction device based on atomically dispersed iron electrocatalysts. <i>Nano Energy</i> , 2021 , 87, 106187	17.1	7
180	An ultra-stable anode material for high/low-temperature workable super-fast charging sodium-ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 422, 130054	14.7	10
179	Improved NH3-N conversion efficiency to N2 activated by BDD substrate on NiCu electrocatalysis process. <i>Separation and Purification Technology</i> , 2021 , 276, 119350	8.3	1
178	Hydrothermal combined with electrodeposition construction of a stable Co9S8/Ni3S2@NiFe-LDH heterostructure electrocatalyst for overall water splitting. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 1429-1	438	9
177	A Superaerophobic Bimetallic Selenides Heterostructure for Efficient Industrial-Level Oxygen Evolution at Ultra-High Current Densities. <i>Nano-Micro Letters</i> , 2020 , 12, 104	19.5	56
176	A Universal Principle to Accurately Synthesize Atomically Dispersed Metal-N Sites for CO Electroreduction. <i>Nano-Micro Letters</i> , 2020 , 12, 108	19.5	30
175	Highly Effective Electrochemical Exfoliation of Ultrathin Tantalum Disulfide Nanosheets for Energy-Efficient Hydrogen Evolution Electrocatalysis. <i>ACS Applied Materials & Discrete Materials & Discre</i>	9.5	15
174	Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually High-Efficient CO Electroreduction and High-Performance Zn-CO Batteries. <i>Advanced Materials</i> , 2020 , 32, e2002430	24	8o
173	High-Performance Metal-Free Nanosheets Array Electrocatalyst for Oxygen Evolution Reaction in Acid. <i>Advanced Functional Materials</i> , 2020 , 30, 2003000	15.6	22
172	Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate. <i>Chinese Chemical Letters</i> , 2020 , 31, 1415-1421	8.1	25

(2020-2020)

171	Nanoconfined Tin Oxide within N-Doped Nanocarbon Supported on Electrochemically Exfoliated Graphene for Efficient Electroreduction of CO to Formate and C1 Products. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 16178-16185	9.5	27
170	Ultrathin tin monosulfide nanosheets with the exposed (001) plane for efficient electrocatalytic conversion of CO into formate. <i>Chemical Science</i> , 2020 , 11, 3952-3958	9.4	34
169	Exfoliated metallic niobium disulfate nanosheets for enhanced electrochemical ammonia synthesis and Zn-N2 battery. <i>Applied Catalysis B: Environmental</i> , 2020 , 270, 118892	21.8	21
168	Strongly coupling of amorphous/crystalline reduced FeOOH/ENi(OH) heterostructure for extremely efficient water oxidation at ultra-high current density. <i>Journal of Colloid and Interface Science</i> , 2020 , 579, 340-346	9.3	16
167	Boosting alkaline hydrogen evolution and ZnH2O cell induced by interfacial electron transfer. <i>Nano Energy</i> , 2020 , 71, 104621	17.1	48
166	Construction of Defect-Rich Ni-Fe-Doped K MnO Cubic Nanoflowers via Etching Prussian Blue Analogue for Efficient Overall Water Splitting. <i>Small</i> , 2020 , 16, e1905223	11	25
165	Cerium oxide embedded bilayer separator enabling fast polysulfide conversion for high-performance lithium-sulfur batteries. <i>Chemical Engineering Journal</i> , 2020 , 388, 124120	14.7	34
164	Porous metal-porphyrin triazine-based frameworks for efficient CO2 electroreduction. <i>Applied Catalysis B: Environmental</i> , 2020 , 270, 118908	21.8	34
163	Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn田2O cell over a wide pH range. <i>Nano Energy</i> , 2020 , 74, 104850	17.1	69
162	Atomically Defined Undercoordinated Active Sites for Highly Efficient CO2 Electroreduction. <i>Advanced Functional Materials</i> , 2020 , 30, 1907658	15.6	115
161	Nitrogen-doped carbon nanotube-encapsulated nickel nanoparticles assembled on graphene for efficient CO2 electroreduction. <i>Chinese Chemical Letters</i> , 2020 , 31, 1438-1442	8.1	9
160	One-step synthesis of rice husk carbon with dangling CC bonds loaded g-C3N4 for enhanced photocatalytic degradation. <i>Journal of Cleaner Production</i> , 2020 , 272, 122625	10.3	10
159	Electrospinning MoS2-Decorated Porous Carbon Nanofibers for High-Performance LithiumBulfur Batteries. ACS Applied Energy Materials, 2020, 3, 11893-11899	6.1	12
158	Understanding the Efficiency and Selectivity of Two-Electron Production of Metalloporphyrin-Embedded Zirconium-Pyrogallol Scaffolds in Electrochemical CO Reduction. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 52588-52594	9.5	2
157	RuS2-x quantum dots/rGO as bifunctional hydrogen electrocatalysts for harvesting electrochemical neutralization energy. <i>Journal of Power Sources</i> , 2020 , 472, 228625	8.9	12
156	3D porous carbon nanofibers with CeO2-decorated as cathode matrix for high performance lithium-sulfur batteries. <i>Journal of Power Sources</i> , 2020 , 473, 228588	8.9	40
155	Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides. <i>Nano Energy</i> , 2020 , 77, 105162	17.1	58
154	Controllably Engineering Mesoporous Surface and Dimensionality of SnO2 toward High-Performance CO2 Electroreduction. <i>Advanced Functional Materials</i> , 2020 , 30, 2002092	15.6	44

153	Acidic Electrolytes: High-Performance Metal-Free Nanosheets Array Electrocatalyst for Oxygen Evolution Reaction in Acid (Adv. Funct. Mater. 31/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 20702	105.6	1
152	Platinum Atomic Clusters Embedded in Defects of Anatase/Graphene for Efficient Electro- and Photocatalytic Hydrogen Evolution. <i>ACS Applied Materials & Defects & Defe</i>	9.5	13
151	Biomass-Derived, Water-Induced Self-Recoverable Composite Aerogels with Robust Superwettability for Water Treatment. <i>Langmuir</i> , 2020 , 36, 10960-10969	4	12
150	Iron clusters boosted performance in electrocatalytic carbon dioxide conversion. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 21661-21667	13	6
149	Conjugated Acetylenic Polymers Grafted Cuprous Oxide as an Efficient Z-Scheme Heterojunction for Photoelectrochemical Water Reduction. <i>Advanced Materials</i> , 2020 , 32, e2002486	24	15
148	Nanocarbon-Based Hybrids as Electrocatalysts for Hydrogen and Oxygen Evolution From Water Splitting 2020 , 379-418		2
147	Promotional effect of nitrogen-doping on a ceria unary oxide catalyst with rich oxygen vacancies for selective catalytic reduction of NO with NH3. <i>Chemical Engineering Journal</i> , 2020 , 379, 122302	14.7	27
146	Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting. <i>Nano-Micro Letters</i> , 2020 , 13, 24	19.5	28
145	High-index faceted binary-metal selenide nanosheet arrays as efficient 3D electrodes for alkaline hydrogen evolution. <i>Nanoscale</i> , 2019 , 11, 17571-17578	7.7	19
144	Beyond lotus: Plasma nanostructuring enables efficient energy and water conversion and use. <i>Nano Energy</i> , 2019 , 66, 104125	17.1	21
143	A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 965-971	13	123
142	Atomic Ni Anchored Covalent Triazine Framework as High Efficient Electrocatalyst for Carbon Dioxide Conversion. <i>Advanced Functional Materials</i> , 2019 , 29, 1806884	15.6	139
141	Water-Plasma Assisted Synthesis of Oxygen-Enriched Nife Layered Double Hydroxide Nanosheets for Efficient Oxygen Evolution Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 4247-4254	8.3	43
140	Electrochemical exfoliation of ultrathin ternary molybdenum sulfoselenide nanosheets to boost the energy-efficient hydrogen evolution reaction. <i>Nanoscale</i> , 2019 , 11, 16200-16207	7.7	18
139	Molecular Engineering of Conjugated Acetylenic Polymers for Efficient Cocatalyst-free Photoelectrochemical Water Reduction. <i>Angewandte Chemie</i> , 2019 , 131, 10476-10482	3.6	5
138	Molecular Engineering of Conjugated Acetylenic Polymers for Efficient Cocatalyst-free Photoelectrochemical Water Reduction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10368-103	3 7 4·4	24
137	Integrated System of Solar Cells with Hierarchical NiCoO Battery-Supercapacitor Hybrid Devices for Self-Driving Light-Emitting Diodes. <i>Nano-Micro Letters</i> , 2019 , 11, 42	19.5	39
136	Highly active metallic nickel sites confined in N-doped carbon nanotubes toward significantly enhanced activity of CO2 electroreduction. <i>Carbon</i> , 2019 , 150, 52-59	10.4	54

135	ZIF-Derived Carbon Nanoarchitecture as a Bifunctional pH-Universal Electrocatalyst for Energy-Efficient Hydrogen Evolution. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 10044-10051	8.3	40
134	Carbon-Rich Nonprecious Metal Single Atom Electrocatalysts for CO2 Reduction and Hydrogen Evolution. <i>Small Methods</i> , 2019 , 3, 1900210	12.8	105
133	Modeling phonon thermal conductivity in spatially confined GaN nanofilms under stress fields and phonon surface scattering. <i>AIP Advances</i> , 2019 , 9, 015024	1.5	6
132	NiCoMo Hydroxide Nanosheet Arrays Synthesized via Chloride Corrosion for Overall Water Splitting. <i>ACS Energy Letters</i> , 2019 , 4, 952-959	20.1	152
131	Scalable Production of Few-Layer Niobium Disulfide Nanosheets via Electrochemical Exfoliation for Energy-Efficient Hydrogen Evolution Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 13205-	13213	38
130	Zeolitic Imidazolate Framework-Derived Core-Shell-Structured CoS2/CoS2-N-C Supported on Electrochemically Exfoliated Graphene Foil for Efficient Oxygen Evolution. <i>Batteries and Supercaps</i> , 2019 , 2, 348-354	5.6	19
129	Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. <i>Nature Communications</i> , 2019 , 10, 1392	17.4	280
128	Poly(1,4-Diethynylbenzene) Gradient Homojunction with Enhanced Charge Carrier Separation for Photoelectrochemical Water Reduction. <i>Advanced Materials</i> , 2019 , 31, e1900961	24	35
127	Hollow black TiAlO nanocomposites for solar thermal desalination. <i>Nanoscale</i> , 2019 , 11, 9958-9968	7.7	14
126	In Situ Growth of Nitrogen-Doped Carbon-Coated DFe2O3 Nanoparticles on Carbon Fabric for Electrochemical N2 Fixation. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 8853-8859	8.3	41
125	Kinetics and mechanism of low-concentration CO2 adsorption on solid amine in a humid confined space. <i>Canadian Journal of Chemical Engineering</i> , 2019 , 97, 697-701	2.3	2
124	Efficient alkaline hydrogen evolution on atomically dispersed Ni N x Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. <i>Energy and Environmental Science</i> , 2019 , 12, 149-156	35.4	299
123	Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms. <i>Chinese Physics B</i> , 2019 , 28, 086501	1.2	2
122	Interfacial engineering of Ru-S-Sb/antimonene electrocatalysts for highly efficient electrolytic hydrogen generation in neutral electrolyte. <i>Chemical Communications</i> , 2019 , 55, 10884-10887	5.8	17
121	Nitrogen-Doped Carbon-Encased Bimetallic Selenide for High-Performance Water Electrolysis. <i>Nano-Micro Letters</i> , 2019 , 11, 67	19.5	44
120	Strongly Coupled 3D N-Doped MoO/NiS Hybrid for High Current Density Hydrogen Evolution Electrocatalysis and Biomass Upgrading. <i>ACS Applied Materials & Description</i> , 11, 27743-27750	9.5	52
119	Incorporating p-Phenylene as an Electron-Donating Group into Graphitic Carbon Nitride for Efficient Charge Separation. <i>ChemSusChem</i> , 2019 , 12, 4285-4292	8.3	13
118	Nanostructured Carbon Based Heterogeneous Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. <i>ChemCatChem</i> , 2019 , 11, 5855-5874	5.2	49

117	CuSn Alloy Nanoparticles on Nitrogen-Doped Graphene for Electrocatalytic CO2 Reduction. <i>ChemElectroChem</i> , 2019 , 6, 5951-5957	4.3	37
116	Single Atom Electrocatalysts: Carbon-Rich Nonprecious Metal Single Atom Electrocatalysts for CO2 Reduction and Hydrogen Evolution (Small Methods 10/2019). <i>Small Methods</i> , 2019 , 3, 1970033	12.8	3
115	Bioinspired Binders Actively Controlling Ion Migration and Accommodating Volume Change in High Sulfur Loading LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1902938	21.8	42
114	Dual Cross-Linked Fluorinated Binder Network for High-Performance Silicon and Silicon Oxide Based Anodes in Lithium-Ion Batteries. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 11, 46800-46807	9.5	30
113	Confined carburization-engineered synthesis of ultrathin nickel oxide/nickel heterostructured nanosheets for enhanced oxygen evolution reaction. <i>Nanoscale</i> , 2019 , 11, 22261-22269	7.7	8
112	Boron and nitrogen co-doped porous carbon nanofibers as metal-free electrocatalysts for highly efficient ammonia electrosynthesis. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26272-26278	13	40
111	Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO2 reduction to CO. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25191-25202	13	57
110	Noble metal-free two dimensional carbon-based electrocatalysts for water splitting. <i>BMC Materials</i> , 2019 , 1,	6.7	15
109	Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications. <i>Nano Today</i> , 2019 , 24, 103-119	17.9	241
108	Hydrogen-Mediated Electron Transfer in Hybrid Microbiallhorganic Systems and Application in Energy and the Environment. <i>Energy Technology</i> , 2019 , 7, 1800987	3.5	12
107	Fast expansion of graphite into superior three-dimensional anode for microbial fuel cells. <i>Journal of Power Sources</i> , 2019 , 412, 86-92	8.9	19
106	Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N4 Active Site Identification Revealed by X-ray Absorption Spectroscopy. <i>ACS Catalysis</i> , 2018 , 8, 2824-2832	13.1	306
105	Designed synthesis of anataseIIiO2 (B) biphase nanowire/ZnO nanoparticle heterojunction for enhanced photocatalysis. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8289-8298	13	82
104	Nitrogen Vacancy Structure Driven Photoeletrocatalytic Degradation of 4-Chlorophenol Using Porous Graphitic Carbon Nitride Nanosheets. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 6497-	-6 \$ 96	49
103	Highly Selective Electrochemical Conversion of CO2 to HCOOH on Dendritic Indium Foams. <i>ChemElectroChem</i> , 2018 , 5, 215-215	4.3	1
102	The Effect of CNTs on Performance Improvement of rGO Supported Fe-Nx/C Electrocatalysts for the Oxygen Reduction Reaction. <i>Journal of the Electrochemical Society</i> , 2018 , 165, F401-F407	3.9	6
101	Porous Cobalt Oxynitride Nanosheets for Efficient Electrocatalytic Water Oxidation. <i>ChemSusChem</i> , 2018 , 11, 1479-1485	8.3	24
100	Effects of solids retention time on the performance and microbial community structures in membrane bioreactors treating synthetic oil refinery wastewater. <i>Chemical Engineering Journal</i> , 2018 , 344, 462-468	14.7	35

99	Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes. <i>Nature Communications</i> , 2018 , 9, 1140	17.4	84
98	Fe?N4 Sites Embedded into Carbon Nanofiber Integrated with Electrochemically Exfoliated Graphene for Oxygen Evolution in Acidic Medium. <i>Advanced Energy Materials</i> , 2018 , 8, 1801912	21.8	149
97	3D Edge-Enriched Fe C@C Nanocrystals with a Core-Shell Structure Grown on Reduced Graphene Oxide Networks for Efficient Oxygen Reduction Reaction. <i>ChemSusChem</i> , 2018 , 11, 3292-3298	8.3	21
96	S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion. <i>Frontiers of Chemical Science and Engineering</i> , 2018 , 12, 346-357	4.5	5
95	In situ growing of Bi/Bi2O2CO3 on Bi2WO6 nanosheets for improved photocatalytic performance. <i>Catalysis Today</i> , 2018 , 314, 2-9	5.3	40
94	Highly Selective Electrochemical Conversion of CO2 to HCOOH on Dendritic Indium Foams. <i>ChemElectroChem</i> , 2018 , 5, 253-259	4.3	57
93	Nanostructured Ternary Metal Tungstate-Based Photocatalysts for Environmental Purification and Solar Water Splitting: A Review. <i>Nano-Micro Letters</i> , 2018 , 10, 69	19.5	110
92	Efficient Electrocatalytic Oxygen Evolution at Extremely High Current Density over 3D Ultrasmall Zero-Valent Iron-Coupled Nickel Sulfide Nanosheets. <i>ChemElectroChem</i> , 2018 , 5, 3866-3872	4.3	37
91	Evidence of the Strong Metal Support Interaction in a Palladium-Ceria Hybrid Electrocatalyst for Enhancement of the Hydrogen Evolution Reaction. <i>Journal of the Electrochemical Society</i> , 2018 , 165, F1147-F1153	3.9	18
90	Oxygen Evolution: Fe?N4 Sites Embedded into Carbon Nanofiber Integrated with Electrochemically Exfoliated Graphene for Oxygen Evolution in Acidic Medium (Adv. Energy Mater. 26/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870119	21.8	2
89	An ultrathin cobalt-based zeolitic imidazolate framework nanosheet array with a strong synergistic effect towards the efficient oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1887	7-1 8 883	3 ⁶⁵
88	Embedding Co2P Nanoparticles in N-Doped Carbon Nanotubes Grown on Porous Carbon Polyhedra for High-Performance Lithium-Ion Batteries. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 13019-13025	3.9	18
87	Water Splitting-Biosynthetic Hybrid System for CO Conversion using Nickel Nanoparticles Embedded in N-Doped Carbon Nanotubes. <i>ChemSusChem</i> , 2018 , 11, 2382-2387	8.3	24
86	Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. <i>Small Methods</i> , 2017 , 1, 1700090	12.8	85
85	Self-templated formation of ZnFe2O4 double-shelled hollow microspheres for photocatalytic degradation of gaseous o-dichlorobenzene. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8909-8915	13	73
84	CuS/RGO hybrid by one-pot hydrothermal method for efficient electrochemical sensing of hydrogen peroxide. <i>Chinese Chemical Letters</i> , 2017 , 28, 1306-1311	8.1	14
83	Deformable and flexible electrospun nanofiber-supported cross-linked gel polymer electrolyte membranes for high safety lithium-ion batteries. <i>RSC Advances</i> , 2017 , 7, 22728-22734	3.7	22
82	Integrated Hierarchical Cobalt Sulfide/Nickel Selenide Hybrid Nanosheets as an Efficient Three-dimensional Electrode for Electrochemical and Photoelectrochemical Water Splitting. <i>Nano Letters</i> , 2017 , 17, 4202-4209	11.5	216

81	Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. <i>Nano Energy</i> , 2017 , 41, 600-608	17.1	107
80	Temperature-dependent Crystallization of MoS Nanoflakes on Graphene Nanosheets for Electrocatalysis. <i>Nanoscale Research Letters</i> , 2017 , 12, 479	5	23
79	Ternary Porous Cobalt Phosphoselenide Nanosheets: An Efficient Electrocatalyst for Electrocatalytic and Photoelectrochemical Water Splitting. <i>Advanced Materials</i> , 2017 , 29, 1701589	24	192
78	Tunable Synthesis of Yolk-Shell Porous Silicon@Carbon for Optimizing Si/C-Based Anode of Lithium-Ion Batteries. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2017 , 9, 42084-42092	9.5	135
77	Flexible All-Solid-State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene. <i>Advanced Energy Materials</i> , 2017 , 7, 160	o 1 887	298
76	Efficient Electrochemical and Photoelectrochemical Water Splitting by a 3D Nanostructured Carbon Supported on Flexible Exfoliated Graphene Foil. <i>Advanced Materials</i> , 2017 , 29, 1604480	24	139
75	Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. <i>Nature Communications</i> , 2016 , 7, 13461	17.4	213
74	Nitrogen-doped graphene/CoNi alloy encased within bamboo-like carbon nanotube hybrids as cathode catalysts in microbial fuel cells. <i>Journal of Power Sources</i> , 2016 , 307, 561-568	8.9	113
73	3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries. <i>Nanoscale</i> , 2016 , 8, 8228-35	7.7	85
72	Strongly Coupled Ternary Hybrid Aerogels of N-deficient Porous Graphitic-C3N4 Nanosheets/N-Doped Graphene/NiFe-Layered Double Hydroxide for Solar-Driven Photoelectrochemical Water Oxidation. <i>Nano Letters</i> , 2016 , 16, 2268-77	11.5	215
71	Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. <i>Energy and Environmental Science</i> , 2016 , 9, 478-483	35.4	646
70	Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review. <i>Materials Horizons</i> , 2016 , 3, 382-401	14.4	257
69	Hybrid Electrocatalysis: An Advanced Nitrogen-Doped Graphene/Cobalt-Embedded Porous Carbon Polyhedron Hybrid for Efficient Catalysis of Oxygen Reduction and Water Splitting (Adv. Funct. Mater. 6/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 871-871	15.6	11
68	Rational design of mesoporous NiFe-alloy-based hybrids for oxygen conversion electrocatalysis. Journal of Materials Chemistry A, 2015 , 3, 7986-7993	13	74
67	Porous Carbon Nanosheets Codoped with Nitrogen and Sulfur for Oxygen Reduction Reaction in Microbial Fuel Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 18672-8	9.5	77
66	A three-dimensionally interconnected carbon nanotube/layered MoS2 nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life. <i>Nano Energy</i> , 2015 , 16, 10-18	17.1	137
65	Facile solvothermal synthesis of MnFe2O4 hollow nanospheres and their photocatalytic degradation of benzene investigated by in situ FTIR. <i>Catalysis Communications</i> , 2015 , 68, 11-14	3.2	44
64	One-pot synthesis of high-performance Co/graphene electrocatalysts for glucose fuel cells free of enzymes and precious metals. <i>Chemical Communications</i> , 2015 , 51, 9354-7	5.8	46

(2014-2015)

63	An Advanced Nitrogen-Doped Graphene/Cobalt-Embedded Porous Carbon Polyhedron Hybrid for Efficient Catalysis of Oxygen Reduction and Water Splitting. <i>Advanced Functional Materials</i> , 2015 , 25, 872-882	15.6	612
62	Strongly Coupled 3D Hybrids of N-doped Porous Carbon Nanosheet/CoNi Alloy-Encapsulated Carbon Nanotubes for Enhanced Electrocatalysis. <i>Small</i> , 2015 , 11, 5940-8	11	148
61	Controllable Synthesis and Tunable Photocatalytic Properties of Ti(3+)-doped TiO2. <i>Scientific Reports</i> , 2015 , 5, 10714	4.9	115
60	Electrocatalysis: Strongly Coupled 3D Hybrids of N-doped Porous Carbon Nanosheet/CoNi Alloy-Encapsulated Carbon Nanotubes for Enhanced Electrocatalysis (Small 44/2015). <i>Small</i> , 2015 , 11, 5939-5939	11	2
59	Enhanced visible light photocatalytic degradation of metoprolol by AgBi2WO6graphene composite. Separation and Purification Technology, 2015, 142, 1-7	8.3	34
58	Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. <i>Nano Energy</i> , 2015 , 12, 1-8	17.1	193
57	Ultrasensitive quantum dot fluorescence quenching assay for selective detection of mercury ions in drinking water. <i>Scientific Reports</i> , 2014 , 4, 5624	4.9	73
56	High-performance bi-functional electrocatalysts of 3D crumpled graphenellobalt oxide nanohybrids for oxygen reduction and evolution reactions. <i>Energy and Environmental Science</i> , 2014 , 7, 609-616	35.4	524
55	Quantification of oxymatrine in rat plasma by UPLC-MS/MS to support the pharmacokinetic analyses of oxymatrine-loaded polymersomes. <i>Analytical Methods</i> , 2014 , 6, 1811-1817	3.2	3
54	A 3D hybrid of layered MoS2/nitrogen-doped graphene nanosheet aerogels: an effective catalyst for hydrogen evolution in microbial electrolysis cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13795-1	3890	172
53	N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries. <i>Nano Energy</i> , 2014 , 8, 157-164	17.1	208
52	In Situ Preparation of a Ti3+ Self-Doped TiO2 Film with Enhanced Activity as Photoanode by N2H4 Reduction. <i>Angewandte Chemie</i> , 2014 , 126, 10653-10657	3.6	49
51	Facile One-Pot, One-Step Synthesis of a Carbon Nanoarchitecture for an Advanced Multifunctonal Electrocatalyst. <i>Angewandte Chemie</i> , 2014 , 126, 6614-6618	3.6	24
50	In situ preparation of a Till+ self-doped TiOlfilm with enhanced activity as photoanode by NHII reduction. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 10485-9	16.4	176
49	Ultrasensitive chemical sensing through facile tuning defects and functional groups in reduced graphene oxide. <i>Analytical Chemistry</i> , 2014 , 86, 7516-22	7.8	68
48	Branched WO3 nanosheet array with layered C3 N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. <i>Advanced Materials</i> , 2014 , 26, 5043-9	24	283
47	Facile one-pot, one-step synthesis of a carbon nanoarchitecture for an advanced multifunctonal electrocatalyst. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 6496-500	16.4	155
46	Enhanced photovoltaic performance of perovskite CHNHPbllsolar cells with freestanding TiOll nanotube array films. <i>Chemical Communications</i> , 2014 , 50, 6368-71	5.8	142

45	Metal Drganic Framework-Derived Nitrogen-Doped Core-Shell-Structured Porous Fe/Fe3C@C Nanoboxes Supported on Graphene Sheets for Efficient Oxygen Reduction Reactions. <i>Advanced Energy Materials</i> , 2014 , 4, 1400337	21.8	461
44	Constructing 2D porous graphitic C3 N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. <i>Advanced Materials</i> , 2013 , 25, 6291-	7 4	683
43	Integration of supertetrahedral cluster with reduced graphene oxide sheets for enhanced photostability and photoelectrochemical properties. <i>Science China Chemistry</i> , 2013 , 56, 423-427	7.9	9
42	Boron carbides as efficient, metal-free, visible-light-responsive photocatalysts. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3241-5	16.4	106
41	A Three-Dimensional Branched Cobalt-Doped Fe2O3 Nanorod/MgFe2O4 Heterojunction Array as a Flexible Photoanode for Efficient Photoelectrochemical Water Oxidation. <i>Angewandte Chemie</i> , 2013 , 125, 1286-1290	3.6	70
40	A three-dimensional branched cobalt-doped Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1248-52	16.4	211
39	Facile preparation of sphere-like copper ferrite nanostructures and their enhanced visible-light-induced photocatalytic conversion of benzene. <i>Materials Research Bulletin</i> , 2013 , 48, 4216-4	1222	39
38	One-pot synthesis of MgFe2O4 nanospheres by solvothermal method. <i>Materials Letters</i> , 2013 , 96, 85-88	3.3	65
37	ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: Facile synthesis, improved activity and photocatalytic mechanism. <i>Applied Catalysis B: Environmental</i> , 2013 , 142-143, 80-88	21.8	142
36	Boron Carbides as Efficient, Metal-Free, Visible-Light-Responsive Photocatalysts. <i>Angewandte Chemie</i> , 2013 , 125, 3323-3327	3.6	25
35	Monocopper doping in Cd-In-S supertetrahedral nanocluster via two-step strategy and enhanced photoelectric response. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10250-3	16.4	98
34	Synthesis and photo activity of flower-like anatase TiO2 with {001} facets exposed. <i>Materials Letters</i> , 2012 , 66, 308-310	3.3	10
33	Visible light-driven FelDlhanorod/graphene/BiVlkMoxOllore/shell heterojunction array for efficient photoelectrochemical water splitting. <i>Nano Letters</i> , 2012 , 12, 6464-73	11.5	392
32	Enhanced visible-light induced degradation of benzene on Mg-ferrite/hematite/PANI nanospheres: in situ FTIR investigation. <i>Journal of Hazardous Materials</i> , 2012 , 241-242, 472-7	12.8	30
31	Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation. <i>Environmental Science & Environmental Science & En</i>	50 ^{0.3}	209
30	Ag3PO4 Oxygen Evolution Photocatalyst Employing Synergistic Action of Ag/AgBr Nanoparticles and Graphene Sheets. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 20132-20139	3.8	118
29	Surface photovoltage property of magnesium ferrite/hematite heterostructured hollow nanospheres prepared with one-pot strategy. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 403, 35-40	5.1	21
28	Synthesis and photoinduced charge-transfer properties of a ZnFe2O4-sensitized TiO2 nanotube array electrode. <i>Langmuir</i> , 2011 , 27, 3113-20	4	100

27	Uniform Fe2O3 nanotubes fabricated for adsorption and photocatalytic oxidation of naphthalene. <i>Materials Chemistry and Physics</i> , 2011 , 129, 683-687	4.4	21
26	Facile synthesis and characterization of ZnFe2O4/日e2O3 composite hollow nanospheres. Materials Research Bulletin, 2011 , 46, 2235-2239	5.1	14
25	Capability of novel ZnFeDIhanotube arrays for visible-light induced degradation of 4-chlorophenol. <i>Chemosphere</i> , 2011 , 82, 581-6	8.4	83
24	TiO2 nanotube/AgAgBr three-component nanojunction for efficient photoconversion. <i>Journal of Materials Chemistry</i> , 2011 , 21, 18067		85
23	A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation. <i>Journal of Colloid and Interface Science</i> , 2011 , 358, 102-8	9.3	217
22	Electrochemically assisted photocatalytic degradation of 4-chlorophenol by ZnFe2O4-modified TiO2 nanotube array electrode under visible light irradiation. <i>Environmental Science & amp; Technology</i> , 2010 , 44, 5098-103	10.3	163
21	FTIR study of the photocatalytic degradation of gaseous benzene over UV-irradiated TiO2 nanoballs synthesized by hydrothermal treatment in alkaline solution. <i>Materials Research Bulletin</i> , 2010 , 45, 1889-1893	5.1	16
20	Electrochemical Method for Synthesis of a ZnFe2O4/TiO2 Composite Nanotube Array Modified Electrode with Enhanced Photoelectrochemical Activity. <i>Advanced Functional Materials</i> , 2010 , 20, 2165-	-2 ¹ 1574	278
19	High-efficient photooxidative degradation of dyes catalyzed by hetero-nuclear complex under light irradiation. <i>Inorganic Chemistry Communication</i> , 2010 , 13, 1527-1529	3.1	5
18	Facile fabrication, characterization, and enhanced photoelectrocatalytic degradation performance of highly oriented TiO2 nanotube arrays. <i>Journal of Nanoparticle Research</i> , 2009 , 11, 2153-2162	2.3	24
17	Fabrication and photo-electrocatalytic properties of highly oriented titania nanotube arrays with {1 0 1} crystal face. <i>Separation and Purification Technology</i> , 2009 , 67, 135-140	8.3	10
16	Structural and photovoltaic properties of highly ordered ZnFe2O4 nanotube arrays fabricated by a facile solgel template method. <i>Acta Materialia</i> , 2009 , 57, 2684-2690	8.4	72
15	Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation. <i>Environmental Science & Environmental Science & Environme</i>	10.3	220
14	Synthesis of ZnO/TiO2 nanotube composite film by a two-step route. <i>Materials Letters</i> , 2008 , 62, 3691-	3693	61
13	Recent Advances in Manifold Exfoliated Synthesis of Two-Dimensional Non-precious Metal-Based Nanosheet Electrocatalysts for Water Splitting. <i>Small Structures</i> ,2100153	8.7	6
12	Accelerated Water Dissociation Kinetics By Electron-Enriched Cobalt Sites for Efficient Alkaline Hydrogen Evolution. <i>Advanced Functional Materials</i> ,2109556	15.6	6
11	Promoting CO2 Electroreduction Kinetics on Atomically Dispersed Monovalent Zn(I) Sites by Rationally Engineering Proton-feeding Centers. <i>Angewandte Chemie</i> ,	3.6	2
10	A New Strategy for Accelerating Dynamic Proton Transfer of Electrochemical CO2 Reduction at High Current Densities. <i>Advanced Functional Materials</i> ,2104243	15.6	7

		Yang	Hou
9	Promoting Electrochemical CO 2 Reduction via Boosting Activation of Adsorbed Intermediates on Iron Single-Atom Catalyst. <i>Advanced Functional Materials</i> ,2110174	15.6	8
8	Steering Unit Cell Dipole and Internal Electric Field by Highly Dispersed Er atoms Embedded into NiO for Efficient CO 2 Photoreduction. <i>Advanced Functional Materials</i> ,2111999	15.6	3
7	Hagfish-inspired Smart SLIPS Marine Antifouling Coating Based on Supramolecular: Lubrication Modes Responsively Switching and Self-healing Properties. <i>Advanced Functional Materials</i> ,2201290	15.6	6
6	Highly active ruthenium site stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis. <i>Energy and Environmental Science</i> ,	35.4	8
5	Macroporous Ni-Fe hydroxide bifunctional catalyst for efficient alkaline water splitting. <i>Journal of Sol-Gel Science and Technology</i> ,1	2.3	
4	Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review. <i>Frontiers of Chemical Science and Engineering</i> ,	4.5	O
3	Constructing an S-Scheme Heterojunction between CdIn 2 S 4 and an In 2 O 3 Catalyst for Enhanced Photocatalytic Activity. <i>Advanced Energy and Sustainability Research</i> ,2200012	1.6	0
2	Atomically dispersed dual-metal-site PGM-free electrocatalysts for oxygen reduction reaction: Opportunities and challenges. <i>SusMat</i> ,		4

21.8 6

Energetic Aqueous Batteries. Advanced Energy Materials, 2201074

1