
Mona Nemer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2296452/publications.pdf Version: 2024-02-01

MONA NEMED

#	Article	IF	CITATIONS
1	Nucleotide Analogues Bearing a C2′ or C3′-Stereogenic All-Carbon Quaternary Center as SARS-CoV-2 RdRp Inhibitors. Molecules, 2022, 27, 564.	3.8	3
2	Clr-f expression regulates kidney immune and metabolic homeostasis. Scientific Reports, 2022, 12, 4834.	3.3	1
3	GATA6 is a regulator of sinus node development and heart rhythm. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
4	From embryogenesis to adulthood: Critical role for GATA factors in heart development and function. IUBMB Life, 2020, 72, 53-67.	3.4	35
5	Identification of a C3′-nitrile nucleoside analogue inhibitor of pancreatic cancer cell line growth. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126983.	2.2	5
6	Synthesis of Sialyl Lewis ^X Glycomimetics Bearing a Bicyclic 3- <i>O</i> ,4- <i>C</i> -Fused Galactopyranoside Scaffold. Journal of Organic Chemistry, 2019, 84, 7372-7387.	3.2	6
7	GATA6 Regulates Aortic Valve Remodeling, and Its Haploinsufficiency Leads to Right-Left Type Bicuspid Aortic Valve. Circulation, 2018, 138, 1025-1038.	1.6	63
8	Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies. Redox Biology, 2018, 14, 509-521.	9.0	35
9	Amplified pathogenic actions of angiotensin II in cysteineâ€rich LIMâ€only protein 4–negative mouse hearts. FASEB Journal, 2017, 31, 1620-1638.	0.5	9
10	KLF13 is a genetic modifier of the Holt-Oram syndrome gene TBX5. Human Molecular Genetics, 2017, 26, 942-954.	2.9	21
11	C1q-TNF-Related Protein-9 Promotes Cardiac Hypertrophy and Failure. Circulation Research, 2017, 120, 66-77.	4.5	77
12	Transcription factor PEX1 modulates extracellular matrix turnover through regulation of MMP-9 expression. Cell and Tissue Research, 2017, 367, 369-385.	2.9	10
13	GATA 5 mutation homozygosity linked to a double outlet right ventricle phenotype in a Lebanese patient. Molecular Genetics & Genomic Medicine, 2016, 4, 160-171.	1.2	25
14	Nuclear Receptor-Like Structure and Interaction of Congenital Heart Disease-Associated Factors GATA4 and NKX2-5. PLoS ONE, 2015, 10, e0144145.	2.5	25
15	Endothelial Gata5 transcription factor regulates blood pressure. Nature Communications, 2015, 6, 8835.	12.8	35
16	Novel Exons in the Tbx5 Gene Locus Generate Protein Isoforms with Distinct Expression Domains and Function. Journal of Biological Chemistry, 2015, 290, 6844-6856.	3.4	7
17	Guiding Cardiac Conduction With GATA. Circulation: Cardiovascular Genetics, 2015, 8, 247-249.	5.1	3
18	Repairing hearts with AKT. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13131-13132.	7.1	1

Mona Nemer

#	Article	IF	CITATIONS
19	Glutaredoxin-2 Is Required to Control Oxidative Phosphorylation in Cardiac Muscle by Mediating Deglutathionylation Reactions. Journal of Biological Chemistry, 2014, 289, 14812-14828.	3.4	81
20	Cyclin D2 is a GATA4 cofactor in cardiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1415-1420.	7.1	32
21	Carboxy terminus of GATA4 transcription factor is required for its cardiogenic activity and interaction with CDK4. Mechanisms of Development, 2014, 134, 31-41.	1.7	25
22	Ageing is a risk factor in imatinib mesylate cardiotoxicity. European Journal of Heart Failure, 2014, 16, 367-376.	7.1	36
23	Cyclin D ₂ rescues size and function of GATA4 haplo-insufficient hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1057-H1066.	3.2	17
24	T-box factors: Insights into the evolutionary emergence of the complex heart. Annals of Medicine, 2012, 44, 680-693.	3.8	21
25	Dissociation of Cardiogenic and Postnatal Myocardial Activities of GATA4. Molecular and Cellular Biology, 2012, 32, 2214-2223.	2.3	34
26	Genetic Insights into Bicuspid Aortic Valve Formation. Cardiology Research and Practice, 2012, 2012, 1-8.	1.1	55
27	Cardiac Natriuretic Peptides: From Basic Discovery to Clinical Practice. Cardiovascular Therapeutics, 2011, 29, 362-376.	2.5	50
28	GATA5 interacts with GATA4 and GATA6 in outflow tract development. Developmental Biology, 2011, 358, 368-378.	2.0	86
29	Loss of Gata5 in mice leads to bicuspid aortic valve. Journal of Clinical Investigation, 2011, 121, 2876-2887.	8.2	155
30	GATA4 in Heart Development and Disease. , 2010, , 599-616.		7
31	An endocardial pathway involving Tbx5, Gata4, and Nos3 required for atrial septum formation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19356-19361.	7.1	59
32	GATA-4 Is an Angiogenic Survival Factor of the Infarcted Heart. Circulation: Heart Failure, 2010, 3, 440-450.	3.9	62
33	Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature, 2009, 461, 95-98.	27.8	135
34	Genetic insights into normal and abnormal heart development. Cardiovascular Pathology, 2008, 17, 48-54.	1.6	131
35	Distinct Expression and Function of Alternatively Spliced Tbx5 Isoforms in Cell Growth and Differentiation. Molecular and Cellular Biology, 2008, 28, 4052-4067.	2.3	49
36	The Kruppel-like transcription factor KLF13 is a novel regulator of heart development. EMBO Journal, 2006, 25, 5201-5213.	7.8	79

Mona Nemer

#	Article	IF	CITATIONS
37	A novel mutation in theGATA4 gene in patients with Tetralogy of Fallot. Human Mutation, 2006, 27, 293-294.	2.5	166
38	Convergence of Protein Kinase C and JAK-STAT Signaling on Transcription Factor GATA-4. Molecular and Cellular Biology, 2005, 25, 9829-9844.	2.3	64
39	Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development (Cambridge), 2005, 132, 2463-2474.	2.5	205
40	The Zinc Finger-Only Protein Zfp260 Is a Novel Cardiac Regulator and a Nuclear Effector of α1-Adrenergic Signaling. Molecular and Cellular Biology, 2005, 25, 8669-8682.	2.3	26
41	Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6975-6980.	7.1	251
42	Transcriptional activation of BMP-4 and regulation of mammalian organogenesis by GATA-4 and -6. Developmental Biology, 2003, 254, 131-148.	2.0	153
43	GATA-4 Is a Nuclear Mediator of Mechanical Stretch-activated Hypertrophic Program. Journal of Biological Chemistry, 2003, 278, 23807-23816.	3.4	106
44	Cooperative interaction between GATA5 and NF-ATc regulates endothelial-endocardial differentiation of cardiogenic cells. Development (Cambridge), 2002, 129, 4045-4055.	2.5	82
45	Cooperative interaction between GATA5 and NF-ATc regulates endothelial-endocardial differentiation of cardiogenic cells. Development (Cambridge), 2002, 129, 4045-55.	2.5	39
46	Regulation of heart development and function through combinatorial interactions of transcription factors. Annals of Medicine, 2001, 33, 604-610.	3.8	59
47	A Murine Model of Holt-Oram Syndrome Defines Roles of the T-Box Transcription Factor Tbx5 in Cardiogenesis and Disease. Cell, 2001, 106, 709-721.	28.9	957
48	Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA. Genes and Development, 2001, 15, 2702-2719.	5.9	206
49	Cooperative Interaction between GATA-4 and GATA-6 Regulates Myocardial Gene Expression. Molecular and Cellular Biology, 1999, 19, 4355-4365.	2.3	223
50	Combinatorial interactions regulating cardiac transcription. , 1998, 22, 250-262.		91
51	CATA-4 and Nkx-2.5 Coactivate Nkx-2 DNA Binding Targets: Role for Regulating Early Cardiac Gene Expression. Molecular and Cellular Biology, 1998, 18, 3405-3415.	2.3	295
52	Combinatorial interactions regulating cardiac transcription. Genesis, 1998, 22, 250-262.	2.1	4