
Tianhao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2296207/publications.pdf Version: 2024-02-01

ΤΙΔΝΗΔΟ \λ/Π

#	Article	IF	CITATIONS
1	Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells. Nano-Micro Letters, 2022, 14, 99.	14.4	43
2	Lead-Free Perovskite Solar Cells with Over 10% Efficiency and Size 1 cm ² Enabled by Solvent–Crystallization Regulation in a Two-Step Deposition Method. ACS Energy Letters, 2022, 7, 425-431.	8.8	36
3	Progress of all-perovskite tandem solar cells: the role of narrow-bandgap absorbers. Science China Chemistry, 2021, 64, 218-227.	4.2	37
4	Effects of A site doping on the crystallization of perovskite films. Journal of Materials Chemistry A, 2021, 9, 1372-1394.	5.2	43
5	Additive Engineering toward Highâ€Performance Tin Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100034.	3.1	34
6	Making Room for Growing Oriented FASnl ₃ with Large Grains via Cold Precursor Solution. Advanced Functional Materials, 2021, 31, 2100931.	7.8	57
7	Lead-free tin perovskite solar cells. Joule, 2021, 5, 863-886.	11.7	134
8	Design of Low Bandgap CsPb _{1â^²} <i>_x</i> Sn <i>_x</i> l ₂ Br Perovskite Solar Cells with Excellent Phase Stability. Small, 2021, 17, e2101380.	5.2	42
9	The Main Progress of Perovskite Solar Cells in 2020–2021. Nano-Micro Letters, 2021, 13, 152.	14.4	250
10	Reduction of Nonradiative Loss in Inverted Perovskite Solar Cells by Donorâ^ï€â€"Acceptor Dipoles. ACS Applied Materials & Interfaces, 2021, 13, 44321-44328.	4.0	30
11	Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance. ChemSusChem, 2021, 14, 4354-4376.	3.6	43
12	Interface Energyâ€Level Management toward Efficient Tin Perovskite Solar Cells with Holeâ€Transportâ€Layerâ€Free Structure. Advanced Functional Materials, 2021, 31, 2106560.	7.8	30
13	Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. Journal of Materials Chemistry A, 2020, 8, 2760-2768.	5.2	85
14	Efficient and stable tin-based perovskite solar cells by introducing π-conjugated Lewis base. Science China Chemistry, 2020, 63, 107-115.	4.2	160
15	Templated growth of FASnI ₃ crystals for efficient tin perovskite solar cells. Energy and Environmental Science, 2020, 13, 2896-2902.	15.6	165
16	The Application of Graphene Derivatives in Perovskite Solar Cells. Small Methods, 2020, 4, 2000507.	4.6	35
17	Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nature Communications, 2020, 11, 2678.	5.8	143
18	Surface-Controlled Oriented Growth of FASnI3 Crystals for Efficient Lead-free Perovskite Solar Cells. Joule, 2020, 4, 902-912.	11.7	208

Τιανήαο Wu

#	Article	IF	CITATIONS
19	Efficient and Stable Tin Perovskite Solar Cells Enabled by Graded Heterostructure of Lightâ€Absorbing Layer. Solar Rrl, 2020, 4, 2000240.	3.1	53
20	Highly Reproducible and Efficient FASnI ₃ Perovskite Solar Cells Fabricated with Volatilizable Reducing Solvent. Journal of Physical Chemistry Letters, 2020, 11, 2965-2971.	2.1	115
21	Stabilizing heterostructures of soft perovskite semiconductors. Science, 2019, 365, 687-691.	6.0	447
22	Highly Stable and Efficient FASnI ₃ â€Based Perovskite Solar Cells by Introducing Hydrogen Bonding. Advanced Materials, 2019, 31, e1903721.	11.1	266
23	Efficient Perovskite Solar Cell Modules with High Stability Enabled by Iodide Diffusion Barriers. Joule, 2019, 3, 2748-2760.	11.7	167
24	Efficient and Stable CsPbl ₃ Solar Cells via Regulating Lattice Distortion with Surface Organic Terminal Groups. Advanced Materials, 2019, 31, e1900605.	11.1	209
25	Efficient Defect Passivation for Perovskite Solar Cells by Controlling the Electron Density Distribution of Donorâ€Ï€â€Acceptor Molecules. Advanced Energy Materials, 2019, 9, 1803766.	10.2	280
26	Active Fe ₂ O ₃ nanoparticles encapsulated in porous g-C ₃ N ₄ /graphene sandwich-type nanosheets as a superior anode for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 10666-10672.	5.2	94