Tianhao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2296207/publications.pdf Version: 2024-02-01

ΤΙΛΝΗΛΟ \λ/ιι

#	Article	IF	CITATIONS
1	Stabilizing heterostructures of soft perovskite semiconductors. Science, 2019, 365, 687-691.	6.0	447
2	Efficient Defect Passivation for Perovskite Solar Cells by Controlling the Electron Density Distribution of Donorâ€i€â€Acceptor Molecules. Advanced Energy Materials, 2019, 9, 1803766.	10.2	280
3	Highly Stable and Efficient FASnI ₃ â€Based Perovskite Solar Cells by Introducing Hydrogen Bonding. Advanced Materials, 2019, 31, e1903721.	11.1	266
4	The Main Progress of Perovskite Solar Cells in 2020–2021. Nano-Micro Letters, 2021, 13, 152.	14.4	250
5	Efficient and Stable CsPbI ₃ Solar Cells via Regulating Lattice Distortion with Surface Organic Terminal Groups. Advanced Materials, 2019, 31, e1900605.	11.1	209
6	Surface-Controlled Oriented Growth of FASnI3 Crystals for Efficient Lead-free Perovskite Solar Cells. Joule, 2020, 4, 902-912.	11.7	208
7	Efficient Perovskite Solar Cell Modules with High Stability Enabled by Iodide Diffusion Barriers. Joule, 2019, 3, 2748-2760.	11.7	167
8	Templated growth of FASnI ₃ crystals for efficient tin perovskite solar cells. Energy and Environmental Science, 2020, 13, 2896-2902.	15.6	165
9	Efficient and stable tin-based perovskite solar cells by introducing π-conjugated Lewis base. Science China Chemistry, 2020, 63, 107-115.	4.2	160
10	Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nature Communications, 2020, 11, 2678.	5.8	143
11	Lead-free tin perovskite solar cells. Joule, 2021, 5, 863-886.	11.7	134
12	Highly Reproducible and Efficient FASnI ₃ Perovskite Solar Cells Fabricated with Volatilizable Reducing Solvent. Journal of Physical Chemistry Letters, 2020, 11, 2965-2971.	2.1	115
13	Active Fe ₂ O ₃ nanoparticles encapsulated in porous g-C ₃ N ₄ /graphene sandwich-type nanosheets as a superior anode for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 10666-10672.	5.2	94
14	Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. Journal of Materials Chemistry A, 2020, 8, 2760-2768.	5.2	85
15	Making Room for Growing Oriented FASnI ₃ with Large Grains via Cold Precursor Solution. Advanced Functional Materials, 2021, 31, 2100931.	7.8	57
16	Efficient and Stable Tin Perovskite Solar Cells Enabled by Graded Heterostructure of Lightâ€Absorbing Layer. Solar Rrl, 2020, 4, 2000240.	3.1	53
17	Effects of A site doping on the crystallization of perovskite films. Journal of Materials Chemistry A, 2021, 9, 1372-1394.	5.2	43
18	Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance. ChemSusChem, 2021, 14, 4354-4376.	3.6	43

ΤΙΑΝΗΑΟ WU

#	Article	IF	CITATIONS
19	Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells. Nano-Micro Letters, 2022, 14, 99.	14.4	43
20	Design of Low Bandgap CsPb _{1â^'} <i>_x</i> Sn <i>_x</i> l ₂ Br Perovskite Solar Cells with Excellent Phase Stability. Small, 2021, 17, e2101380.	5.2	42
21	Progress of all-perovskite tandem solar cells: the role of narrow-bandgap absorbers. Science China Chemistry, 2021, 64, 218-227.	4.2	37
22	Lead-Free Perovskite Solar Cells with Over 10% Efficiency and Size 1 cm ² Enabled by Solvent–Crystallization Regulation in a Two-Step Deposition Method. ACS Energy Letters, 2022, 7, 425-431.	8.8	36
23	The Application of Graphene Derivatives in Perovskite Solar Cells. Small Methods, 2020, 4, 2000507.	4.6	35
24	Additive Engineering toward Highâ€Performance Tin Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100034.	3.1	34
25	Reduction of Nonradiative Loss in Inverted Perovskite Solar Cells by Donorâ~ï€â€"Acceptor Dipoles. ACS Applied Materials & Interfaces, 2021, 13, 44321-44328.	4.0	30
26	Interface Energy‣evel Management toward Efficient Tin Perovskite Solar Cells with	7.8	30

Holeâ€Transportâ€Layerâ€Free Structure. Advanced Functional Materials, 2021, 31, 2106560. 26