Jeremy L Jenkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2296162/publications.pdf

Version: 2024-02-01

75	6,004	38 h-index	75
papers	citations		g-index
90	90	90	6232
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	DRUG-seq Provides Unbiased Biological Activity Readouts for Neuroscience Drug Discovery. ACS Chemical Biology, 2022, 17, 1401-1414.	1.6	7
2	CYP27A1-dependent anti-melanoma activity of limonoid natural products targets mitochondrial metabolism. Cell Chemical Biology, 2021, 28, 1407-1419.e6.	2. 5	11
3	Learning epistatic gene interactions from perturbation screens. PLoS ONE, 2021, 16, e0254491.	1.1	5
4	CPSF3-dependent pre-mRNA processing as a druggable node in AML and Ewing's sarcoma. Nature Chemical Biology, 2020, 16, 50-59.	3.9	59
5	Phenotypic landscape of intestinal organoid regeneration. Nature, 2020, 586, 275-280.	13.7	162
6	Systematic Chemogenetic Library Assembly. Cell Chemical Biology, 2020, 27, 1124-1129.	2.5	37
7	Ten simple rules to power drug discovery with data science. PLoS Computational Biology, 2020, 16, e1008126.	1.5	14
8	Benchmarking network algorithms for contextualizing genes of interest. PLoS Computational Biology, 2019, 15, e1007403.	1.5	7
9	Discovery of a ZIP7 inhibitor from a Notch pathway screen. Nature Chemical Biology, 2019, 15, 179-188.	3.9	46
10	Growth-restricting effects of siRNA transfections: a largely deterministic combination of off-target binding and hybridization-independent competition. Nucleic Acids Research, 2018, 46, 9309-9320.	6.5	7
11	DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nature Communications, 2018, 9, 4307.	5.8	133
12	Indolyl-Pyridinyl-Propenone-Induced Methuosis through the Inhibition of PIKFYVE. ACS Omega, 2018, 3, 6097-6103.	1.6	22
13	Recurrent ubiquitin B silencing in gynecological cancers establishes dependence on ubiquitin C. Journal of Clinical Investigation, 2017, 127, 4554-4568.	3.9	21
14	Data-Driven Derivation of an "Informer Compound Set―for Improved Selection of Active Compounds in High-Throughput Screening. Journal of Chemical Information and Modeling, 2016, 56, 1622-1630.	2.5	14
15	Evidence-Based and Quantitative Prioritization of Tool Compounds in Phenotypic Drug Discovery. Cell Chemical Biology, 2016, 23, 862-874.	2.5	52
16	Identifying compound efficacy targets in phenotypic drug discovery. Drug Discovery Today, 2016, 21, 82-89.	3.2	127
17	Causal Network Models for Predicting Compound Targets and Driving Pathways in Cancer. Journal of Biomolecular Screening, 2014, 19, 791-802.	2.6	23
18	Translation of off-target effects: prediction of ADRs by integrated experimental and computational approach. Toxicology Research, 2014, 3, 433-444.	0.9	11

#	Article	IF	CITATIONS
19	Using Information from Historical High-Throughput Screens to Predict Active Compounds. Journal of Chemical Information and Modeling, 2014, 54, 1880-1891.	2.5	79
20	Target identification for a Hedgehog pathway inhibitor reveals the receptor GPR39. Nature Chemical Biology, 2014, 10, 343-349.	3.9	53
21	Rethinking cellular drug response. Nature Chemical Biology, 2013, 9, 669-670.	3.9	7
22	Biodiversity of small molecules – a new perspective in screening set selection. Drug Discovery Today, 2013, 18, 674-680.	3.2	51
23	The Multidimensional Perturbation Value: A Single Metric to Measure Similarity and Activity of Treatments in High-Throughput Multidimensional Screens. Journal of Biomolecular Screening, 2013, 18, 367-377.	2.6	30
24	Determination of minimal transcriptional signatures of compounds for target prediction. Eurasip Journal on Bioinformatics and Systems Biology, 2012, 2012, 2.	1.4	7
25	Rethinking Molecular Similarity: Comparing Compounds on the Basis of Biological Activity. ACS Chemical Biology, 2012, 7, 1399-1409.	1.6	181
26	Largeâ€Scale QSAR in Target Prediction and Phenotypic HTS Assessment. Molecular Informatics, 2012, 31, 508-514.	1.4	9
27	Large-scale prediction and testing of drug activity on side-effect targets. Nature, 2012, 486, 361-367.	13.7	782
28	Activity-Aware Clustering of High Throughput Screening Data and Elucidation of Orthogonal Structure–Activity Relationships. Journal of Chemical Information and Modeling, 2011, 51, 3158-3168.	2.5	20
29	From in silico target prediction to multi-target drug design: Current databases, methods and applications. Journal of Proteomics, 2011, 74, 2554-2574.	1.2	243
30	Computational methods for early predictive safety assessment from biological and chemical data. Expert Opinion on Drug Metabolism and Toxicology, 2011, 7, 1497-1511.	1.5	28
31	Recent trends and observations in the design of high-quality screening collections. Future Medicinal Chemistry, 2011, 3, 751-766.	1.1	55
32	A lead discovery strategy driven by a comprehensive analysis of proteases in the peptide substrate space. Protein Science, 2010, 19, 2096-2109.	3.1	7
33	Fishing for neuroactive compounds. Nature Chemical Biology, 2010, 6, 172-173.	3.9	14
34	SPREADâ€"exploiting chemical features that cause differential activity behavior. Statistical Analysis and Data Mining, 2009, 2, 115-122.	1.4	1
35	Chemogenomics: Looking at biology through the lens of chemistry. Statistical Analysis and Data Mining, 2009, 2, 149-160.	1.4	10
36	Plate-Based Diversity Selection Based on Empirical HTS Data to Enhance the Number of Hits and Their Chemical Diversity. Journal of Biomolecular Screening, 2009, 14, 690-699.	2.6	67

#	Article	IF	CITATIONS
37	Use of Ligand Based Models for Protein Domains To Predict Novel Molecular Targets and Applications To Triage Affinity Chromatography Data. Journal of Proteome Research, 2009, 8, 2575-2585.	1.8	20
38	How Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space. Journal of Chemical Information and Modeling, 2009, 49, 108-119.	2.5	268
39	Mapping Adverse Drug Reactions in Chemical Space. Journal of Medicinal Chemistry, 2009, 52, 3103-3107.	2.9	156
40	Gaining Insight into Off-Target Mediated Effects of Drug Candidates with a Comprehensive Systems Chemical Biology Analysis. Journal of Chemical Information and Modeling, 2009, 49, 308-317.	2.5	161
41	Knowledge-Based Virtual Screening: Application to the MDM4/p53 Protein–Protein Interaction. Methods in Molecular Biology, 2009, 575, 173-194.	0.4	20
42	Chemogenomic Analysis of Safety Profiling Data. Methods in Molecular Biology, 2009, 575, 207-223.	0.4	9
43	Blocking binding of Bacillus thuringiensis Cry1Aa to Bombyx mori cadherin receptor results in only a minor reduction of toxicity. BMC Biochemistry, 2008, 9, 3.	4.4	11
44	Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nature Chemical Biology, 2008, 4, 59-68.	3.9	332
45	"Virtual Fragment Linking― An Approach To Identify Potent Binders from Low Affinity Fragment Hits. Journal of Medicinal Chemistry, 2008, 51, 2481-2491.	2.9	39
46	Ligand-Target Prediction Using Winnow and Naive Bayesian Algorithms and the Implications of Overall Performance Statistics. Journal of Chemical Information and Modeling, 2008, 48, 2313-2325.	2.5	92
47	Chemogenomic Data Analysis: Prediction of Small-Molecule Targets and the Advent of Biological Fingerprints. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 719-731.	0.6	97
48	"Plate Cherry Pickingâ€: A Novel Semi-Sequential Screening Paradigm for Cheaper, Faster, Information-Rich Compound Selection. Journal of Biomolecular Screening, 2007, 12, 320-327.	2.6	33
49	Analysis of Pharmacology Data and the Prediction of Adverse Drug Reactions and Off-Target Effects from Chemical Structure. ChemMedChem, 2007, 2, 861-873.	1.6	287
50	Clustering and Rule-Based Classifications of Chemical Structures Evaluated in the Biological Activity Space. Journal of Chemical Information and Modeling, 2007, 47, 325-336.	2.5	50
51	Understanding False Positives in Reporter Gene Assays:  in Silico Chemogenomics Approaches To Prioritize Cell-Based HTS Data. Journal of Chemical Information and Modeling, 2007, 47, 1319-1327.	2.5	66
52	Modeling Promiscuity Based on inâ€vitro Safety Pharmacology Profiling Data. ChemMedChem, 2007, 2, 874-880.	1.6	169
53	Flexible 3D pharmacophores as descriptors of dynamic biological space. Journal of Molecular Graphics and Modelling, 2007, 26, 622-633.	1.3	47
54	Enrichment of High-Throughput Screening Data with Increasing Levels of Noise Using Support Vector Machines, Recursive Partitioning, and Laplacian-Modified Naive Bayesian Classifiers. Journal of Chemical Information and Modeling, 2006, 46, 193-200.	2.5	110

#	Article	IF	Citations
55	Prediction of Biological Targets for Compounds Using Multiple-Category Bayesian Models Trained on Chemogenomics Databases. Journal of Chemical Information and Modeling, 2006, 46, 1124-1133.	2.5	315
56	Chapter 9 Molecular Similarity: Advances in Methods, Applications and Validations in Virtual Screening and QSAR. Annual Reports in Computational Chemistry, 2006, 2, 141-168.	0.9	10
57	Bridging Chemical and Biological Space: "Target Fishing―Using 2D and 3D Molecular Descriptors. Journal of Medicinal Chemistry, 2006, 49, 6802-6810.	2.9	184
58	"Bayes Affinity Fingerprints―Improve Retrieval Rates in Virtual Screening and Define Orthogonal Bioactivity Space:  When Are Multitarget Drugs a Feasible Concept?. Journal of Chemical Information and Modeling, 2006, 46, 2445-2456.	2.5	125
59	In silico target fishing: Predicting biological targets from chemical structure. Drug Discovery Today: Technologies, 2006, 3, 413-421.	4.0	155
60	Streamlining lead discovery by aligning in silico and high-throughput screening. Current Opinion in Chemical Biology, 2006, 10, 343-351.	2.8	85
61	A 3D Similarity Method for Scaffold Hopping from Known Drugs or Natural Ligands to New Chemotypes. Journal of Medicinal Chemistry, 2004, 47, 6144-6159.	2.9	126
62	Unexpected Binding Mode for 2â€~-Phosphoadenosine-Based Nucleotide Inhibitors in Complex with Human Angiogenin Revealed by Heteronuclear NMR Spectroscopyâ€. Biochemistry, 2003, 42, 11137-11149.	1.2	11
63	Identification of Small-Molecule Inhibitors of Human Angiogenin and Characterization of Their Binding Interactions Guided by Computational Dockingã€. Biochemistry, 2003, 42, 6674-6687.	1.2	34
64	Inhibition of mammalian ribonucleases by endogenous adenosine dinucleotides. Biochemical and Biophysical Research Communications, 2003, 300, 81-86.	1.0	18
65	A small-molecule inhibitor of the ribonucleolytic activity of human angiogenin that possesses antitumor activity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10066-10071.	3.3	103
66	Virtual screening to enrich hit lists from high-throughput screening: A case study on small-molecule inhibitors of angiogenin. Proteins: Structure, Function and Bioinformatics, 2002, 50, 81-93.	1.5	75
67	Mutations at the arginine residues in $\hat{l}\pm 8$ loop of Bacillus thuring iensis \hat{l} -endotox in Cry1Ac affect toxicity and binding to Manduca sexta and Lymantria disparamino peptidase N. FEBS Letters, 2001, 497, 108-112.	1.3	20
68	Cleavage of 3 ,5 -Pyrophosphate-Linked Dinucleotides by Ribonuclease A and Angiogeninâ€,‡. Biochemistry, 2001, 40, 10262-10272.	1.2	29
69	Plasma lipases and lipid transfer proteins increase phospholipid but not free cholesterol transfer from lipid emulsion to high density lipoproteins. BMC Biochemistry, 2001, 2, 1.	4.4	8
70	Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors. BMC Biochemistry, 2001, 2, 12.	4.4	29
71	Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that bindsBacillus thuringiensis Cry1A toxins with high affinity. Archives of Insect Biochemistry and Physiology, 2001, 46, 186-200.	0.6	71
72	Role of two arginine residues in domain II, loop 2 of Cry1Ab and Cry1Ac Bacillus thuringiensis delta-endotoxin in toxicity and binding to Manduca sexta and Lymantria dispar aminopeptidase N. Molecular Microbiology, 2000, 38, 289-298.	1.2	30

#	Article	IF	CITATIONS
73	Bivalent Sequential Binding Model of a Bacillus thuringiensis Toxin to Gypsy Moth Aminopeptidase N Receptor. Journal of Biological Chemistry, 2000, 275, 14423-14431.	1.6	119
74	Exploring the Mechanism of Action of Insecticidal Proteins by Genetic Engineering Methods. , 2000, 22, 33-54.		17
75	Binding ofBacillus thuringiensisCry1Ac toxin toManduca sextaaminopeptidase-N receptor is not directly related to toxicity. FEBS Letters, 1999, 462, 373-376.	1.3	57