Tatsuo Kaneko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2295687/publications.pdf Version: 2024-02-01

TATSUO KANEKO

#	Article	IF	CITATIONS
1	Highâ€Performance BioNylons from Itaconic and Amino Acids with Pepsin Degradability. Advanced Sustainable Systems, 2022, 6, 2100052.	2.7	8
2	Recent advances in lignocellulosic biomass white biotechnology for bioplastics. Bioresource Technology, 2022, 344, 126165.	4.8	31
3	Highâ€Performance BioNylons from Itaconic and Amino Acids with Pepsin Degradability (Adv.) Tj ETQq1 1 0.78	4314 rgBT 2.7	Overlock 1
4	Superâ€Moisturizing Materials from Morphological Deformation of Suprapolysaccharides. Macromolecular Rapid Communications, 2022, , 2200163.	2.0	1
5	Self-Standing Nanomembranes of Super-Tough Plastics. Langmuir, 2022, 38, 5128-5134.	1.6	4
6	Stepwise copolymerization of polybenzimidazole for a low dielectric constant and ultrahigh heat resistance. RSC Advances, 2022, 12, 11885-11895.	1.7	6
7	Development of High-Performance Bioplastic Contributing to a Sustainable Society. Journal of Fiber Science and Technology, 2022, 78, 156-161.	0.0	0
8	Sum-Frequency Generation and Scanning Electron Microscope Studies on Second-Harmonic Generation Active Structures of Sacran Aggregates. E-Journal of Surface Science and Nanotechnology, 2022, 20, .	0.1	0
9	Reinforcement of ultrahigh thermoresistant polybenzimidazole films by hard craters. Polymer Chemistry, 2022, 13, 4086-4089.	1.9	3
10	The cyanobacterial polysaccharide sacran: characteristics, structures, and preparation of LC gels. Polymer Journal, 2021, 53, 81-91.	1.3	11
11	Ultrahigh Thermoresistant Lightweight Bioplastics Developed from Fermentation Products of Cellulosic Feedstock. Advanced Sustainable Systems, 2021, 5, 2000193.	2.7	16
12	Physiological and genomic analysis of newly-isolated polysaccharide synthesizing cyanobacterium <i>Chroococcus</i> sp. FPU101 and chemical analysis of the exopolysaccharide. Journal of General and Applied Microbiology, 2021, 67, 207-213.	0.4	3
13	A Concise Review on the Physicochemical Properties of Biopolymer Blends Prepared in Ionic Liquids. Molecules, 2021, 26, 216.	1.7	27
14	Synthesis and solvent-controlled self-assembly of diketopiperazine-based polyamides from aspartame. RSC Advances, 2021, 11, 5938-5946.	1.7	8
15	Bis-imino-acenaphthenequinone-Paraphenylene-Type Condensation Copolymer Binder for Ultralong Cyclable Lithium-Ion Rechargeable Batteries. ACS Applied Energy Materials, 2021, 4, 2231-2240.	2.5	14
16	Photodegradation of a semi-aromatic bio-derived polyimide. Polymer Degradation and Stability, 2021, 184, 109472.	2.7	12
17	Photoexpansion of Biobased Polyesters: Mechanism Analysis by Time-Resolved Measurements of an Amorphous Polycinnamate Hard Film. ACS Applied Materials & Interfaces, 2021, 13, 14569-14576.	4.0	5
18	Interfacial self-assembly of polysaccharide rods and platelets bridging over capillary lengths. Journal of Colloid and Interface Science, 2021, 591, 483-489.	5.0	3

#	Article	IF	CITATIONS
19	Synthesis of pH-responsive polyimide hydrogel from bioderived amino acid. Polymer Journal, 2021, 53, 1223-1230.	1.3	6
20	Flame retardant transparent films of thermostable biopolyimide metal hybrids. Polymer Degradation and Stability, 2021, 188, 109571.	2.7	7
21	Orientation Analysis of Polymer Chains in Optically Transparent Biopolyimides Having Rigid and Bending Backbones. ChemistrySelect, 2021, 6, 6525-6532.	0.7	3
22	Convective meniscus splitting of polysaccharide microparticles on various surfaces. Scientific Reports, 2021, 11, 767.	1.6	4
23	Magnetorheological Response for Magnetic Elastomers Containing Carbonyl Iron Particles Coated with Poly(methyl methacrylate). Polymers, 2021, 13, 335.	2.0	4
24	Synergistic Effects of Polybenzimidazole and Aramide on Enhancing Flameâ€Retardancy and Solubility. Macromolecular Materials and Engineering, 2021, 306, 2100459.	1.7	2
25	Mussel-Inspired Epoxy Bioadhesive with Enhanced Interfacial Interactions for Wound Repair. Acta Biomaterialia, 2021, 136, 223-232.	4.1	12
26	Soluble Biobased Polyimides from Diaminotruxinic Acid with Unique Bending Angles. Macromolecules, 2021, 54, 10271-10278.	2.2	9
27	Extremely fast charging lithium-ion battery using bio-based polymer-derived heavily nitrogen doped carbon. Chemical Communications, 2021, , .	2.2	11
28	Biobased liquid crystalline poly(coumarate)s composites and their potential applications. Composites Communications, 2020, 22, 100531.	3.3	4
29	Syntheses of Soluble Biopolyimides Using 4-Aminophenylalanine. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1117-1123.	2.0	4
30	High-temperature resistant water-soluble polymers derived from exotic amino acids. RSC Advances, 2020, 10, 38069-38074.	1.7	11
31	Critical Electric Field and Activation Energy for Electric Conductivity for Biopolyimide Using 4,4′-Diamino-α-truxillic Acid and 1,2,3,4-Cyclobutanetetracarboxylic Dianhydride. Chemistry Letters, 2020, 49, 929-931.	0.7	1
32	Oriented Polysaccharide Bigels from Interfacial Crosslinking. Chemistry Letters, 2020, 49, 1484-1486.	0.7	1
33	Cationic Polymer Brush/Giant Polysaccharide Sacran Assembly: Structure and Lubricity. Langmuir, 2020, 36, 6494-6501.	1.6	9
34	Vapor‧ensitive Materials from Polysaccharide Fibers with Selfâ€Assembling Twisted Microstructures. Small, 2020, 16, e2001993.	5.2	11
35	Morphology-Controlled Self-Assembly and Synthesis of Biopolyimide Particles from 4-Amino-I-phenylalanine. ACS Omega, 2020, 5, 2187-2195.	1.6	10
36	Structure and Properties of Hybrid Film Fabricated by Spin-Assisted Layer-by-Layer Assembly of Sacran and Imogolite Nanotubes. Langmuir, 2020, 36, 1718-1726.	1.6	10

#	Article	IF	CITATIONS
37	Anion-Scavenging Biopolyamides from Quaternized 4-Aminocinnamic Acid Photodimers. ACS Sustainable Chemistry and Engineering, 2020, 8, 3786-3795.	3.2	2
38	Rheopectic Behavior for Aqueous Solutions of Megamolecular Polysaccharide Sacran. Biomolecules, 2020, 10, 155.	1.8	8
39	Epidermal growth factor in sacran hydrogel film accelerates fibroblast migration. Journal of Advanced Pharmaceutical Technology and Research, 2020, 11, 74.	0.4	7
40	Bio-Based Aromatics: Aminobenzoic Acid Derivatives for High-Performance Bioplastics. ACS Symposium Series, 2020, , 99-121.	0.5	2
41	Injectable and Near-Infrared-Responsive Hydrogels Encapsulating Dopamine-Stabilized Gold Nanorods with Long Photothermal Activity Controlled for Tumor Therapy. Biomacromolecules, 2019, 20, 3375-3384.	2.6	51
42	Supramolecular micellar drug delivery system based on multi-arm block copolymer for highly effective encapsulation and sustained-release chemotherapy. Journal of Materials Chemistry B, 2019, 7, 5677-5687.	2.9	17
43	Sacran Hydrogel Film Containing Keratinocyte Growth Factor Accelerates Wound Healing by Stimulating Fibroblast Migration and Re-epithelization. Chemical and Pharmaceutical Bulletin, 2019, 67, 849-854.	0.6	7
44	Effect of Evaporation Rate on Meniscus Splitting with Formation of Vertical Polysaccharide Membranes. Advanced Materials Interfaces, 2019, 6, 1900855.	1.9	4
45	Dataset of various characterizations for novel bio-based plastic poly(benzoxazole-co-benzimidazole) with ultra-low dielectric constant. Data in Brief, 2019, 25, 104114.	0.5	4
46	Evaporative Selfâ€Assembly: Effect of Evaporation Rate on Meniscus Splitting with Formation of Vertical Polysaccharide Membranes (Adv. Mater. Interfaces 17/2019). Advanced Materials Interfaces, 2019, 6, 1970108.	1.9	0
47	Electric Volume Resistivity for Biopolyimide Using 4,4′-Diamino-α-truxillic acid and 1,2,3,4-Cyclobutanetetracarboxylic dianhydride. Polymers, 2019, 11, 1552.	2.0	11
48	N-Boronated polybenzimidazole for composite electrolyte design of highly ion conducting pseudo solid-state ion gel electrolytes with a high Li-transference number. Journal of Materials Chemistry A, 2019, 7, 4459-4468.	5.2	33
49	Micro-deposition control of polysaccharides on evaporative air-LC interface to design quickly swelling hydrogels. Journal of Colloid and Interface Science, 2019, 546, 184-191.	5.0	8
50	Experimental Investigation of Damage Formation in Planar Fibrous Networks During Stretching. Scientific Reports, 2019, 9, 2816.	1.6	2
51	Syntheses of Aromatic/Heterocyclic Derived Bioplastics with High Thermal/Mechanical Performance. Industrial & Engineering Chemistry Research, 2019, 58, 15958-15974.	1.8	16
52	High-performance poly(benzoxazole/benzimidazole) bio-basedÂplastics with ultra-low dielectric constant from 3-amino-4-hydroxybenzoic acid. Polymer Degradation and Stability, 2019, 162, 29-35.	2.7	24
53	Physiological properties and genetic analysis related to exopolysaccharide (EPS) production in the fresh-water unicellular cyanobacterium <i>Aphanothece sacrum</i> (Suizenji Nori). Journal of General and Applied Microbiology, 2019, 65, 39-46.	0.4	11
54	Fermentation and purification of microbial monomer 4-amminocinnamic acid to produce ultra-high performance bioplastics. Process Biochemistry, 2019, 77, 100-105.	1.8	7

#	Article	IF	CITATIONS
55	Preparation of mussel-inspired biopolyester adhesive and comparative study of effects of meta- or para-hydroxyphenylpropionic acid segments on their properties. Polymer, 2019, 165, 152-162.	1.8	12
56	Development of Functional Bionanocomposites Using Cyanobacterial Polysaccharides. Chemical Record, 2018, 18, 1167-1177.	2.9	14
57	Truxillic and truxinic acid-based, bio-derived diesters as potent internal donor in Ziegler-Natta catalyst for propylene polymerization. Applied Catalysis A: General, 2018, 554, 80-87.	2.2	18
58	Formation of Polysaccharide Membranes by Splitting of Evaporative Air–LC Interface. Advanced Materials Interfaces, 2018, 5, 1701219.	1.9	18
59	Polypeptide gels incorporating the exotic functional aromatic amino acid 4-amino- <scp>l</scp> -phenylalanine. Polymer Chemistry, 2018, 9, 3466-3472.	1.9	8
60	Effects of biopolyimide molecular design on their silica hybrids thermo-mechanical, optical and electrical properties. RSC Advances, 2018, 8, 14009-14016.	1.7	12
61	Novel polycondensed biopolyamide generated from biomass-derived 4-aminohydrocinnamic acid. Applied Microbiology and Biotechnology, 2018, 102, 631-639.	1.7	14
62	Fully Bio-based Aromatic Polyimide Using 4-Aminocinnamic Acid and Mellophanic Dianhydride as Bio-derived Monomers. ECS Transactions, 2018, 88, 99-105.	0.3	9
63	Fluorinated and Bio-Based Polyamides with High Transparencies and Low Yellowness Index. Polymers, 2018, 10, 1311.	2.0	11
64	Aromatic Bioplastics with Heterocycles. ACS Symposium Series, 2018, , 201-218.	0.5	6
65	Micropatterned Cell Orientation of Cyanobacterial Liquid-Crystalline Hydrogels. ACS Applied Materials & Interfaces, 2018, 10, 44834-44843.	4.0	8
66	Micelle-Mediated Self-Assembly of Microfibers Bridging Millimeter-Scale Gap To Form Three-Dimensional-Ordered Polysaccharide Membranes. Langmuir, 2018, 34, 13965-13970.	1.6	11
67	Characterization of β-Ga <inf>2</inf> O <inf>3</inf> Schottky barrier diodes. , 2018, , .		0
68	Surface-Selective Control of Cell Orientation on Cyanobacterial Liquid Crystalline Gels. ACS Omega, 2018, 3, 6554-6559.	1.6	7
69	Drying-Induced Macro-Space Partitioning of Supra-Polysaccharides and Membrane Formation with Uniaxial Orientation. Kobunshi Ronbunshu, 2018, 75, 1-8.	0.2	2
70	Robustification of ITO nanolayer by surfaceâ€functionalization of transparent biopolyimide substrates. Journal of Applied Polymer Science, 2018, 135, 46709.	1.3	6
71	Molecular Design of Soluble Biopolyimide with High Rigidity. Polymers, 2018, 10, 368.	2.0	10
72	Enhancement of curcumin wound healing ability by complexation with 2-hydroxypropyl-Î ³ -cyclodextrin in sacran hydrogel film. International Journal of Biological Macromolecules, 2017, 98, 268-276.	3.6	53

#	Article	IF	CITATIONS
73	Drying-Induced Self-Similar Assembly of Megamolecular Polysaccharides through Nano and Submicron Layering. Langmuir, 2017, 33, 4954-4959.	1.6	17
74	Switchable release nano-reservoirs for co-delivery of drugs via a facile micelle–hydrogel composite. Journal of Materials Chemistry B, 2017, 5, 3488-3497.	2.9	27
75	Microbe-Derived Itaconic Acid: Novel Route to Biopolyamides. , 2017, , 279-289.		6
76	Anti-allergic and Profilaggrin (ProFLG)-mRNA expression modulatory effects of sacran. International Journal of Biological Macromolecules, 2017, 105, 1532-1538.	3.6	13
77	Preparation of Tough Biopolyurea Films from Aromatic Amino Acid as Diamine Monomer. Macromolecular Symposia, 2017, 375, 1600194.	0.4	3
78	Tough and Porous Hydrogels Prepared by Simple Lyophilization of LC Gels. ACS Omega, 2017, 2, 5304-5314.	1.6	70
79	Emergence of polysaccharide membrane walls through macro-space partitioning via interfacial instability. Scientific Reports, 2017, 7, 5615.	1.6	20
80	Methods for the Self-integration of Megamolecular Biopolymers on the Drying Air-LC Interface. Journal of Visualized Experiments, 2017, , .	0.2	2
81	Synthesis of thermotropic polybenzoxazole using 3-amino-4-hydroxybenzoic acid. Journal of Polymer Research, 2017, 24, 1.	1.2	16
82	Bio-based mesoporous sponges of chitosan conjugated with amino acid-diketopiperazine through oil-in-water emulsions. Journal of Polymer Research, 2017, 24, 1.	1.2	10
83	Enhancing effect of Î ³ -cyclodextrin on wound dressing properties of sacran hydrogel film. International Journal of Biological Macromolecules, 2017, 94, 181-186.	3.6	17
84	Simultaneous Hardening/Ductilizing Effects of Cryogenic Nanohybridization of Biopolyamides with Montmorillonites. ACS Omega, 2017, 2, 9103-9108.	1.6	3
85	Electric Field Effect on Optical Second-harmonic Generation of Amphoteric Megamolecule Aggregates. Journal of the Physical Society of Japan, 2017, 86, 124401.	0.7	3
86	Sample Size Effect of Magnetomechanical Response for Magnetic Elastomers by Using Permanent Magnets. Journal of Nanomaterials, 2017, 2017, 1-7.	1.5	1
87	Optical second-harmonic images of sacran megamolecule aggregates. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 146.	0.8	8
88	Bacterial fermentation platform for producing artificial aromatic amines. Scientific Reports, 2016, 6, 25764.	1.6	38
89	Directional control of diffusion and swelling in megamolecular polysaccharide hydrogels. Soft Matter, 2016, 12, 5515-5518.	1.2	30
90	Heavy metal biosorption from aqueous solutions by algae inhabiting rice paddies in Vietnam. Journal of Environmental Chemical Engineering, 2016, 4, 2529-2535.	3.3	49

#	Article	IF	CITATIONS
91	Ultrastrong, Transparent Polytruxillamides Derived from Microbial Photodimers. Macromolecules, 2016, 49, 3336-3342.	2.2	50
92	Physically crosslinked-sacran hydrogel films for wound dressing application. International Journal of Biological Macromolecules, 2016, 89, 465-470.	3.6	63
93	Milliscale Self-Integration of Megamolecule Biopolymers on a Drying Gas–Aqueous Liquid Crystalline Interface. Biomacromolecules, 2016, 17, 2096-2103.	2.6	33
94	Solution structure of cyanobacterial polysaccharide, sacran. Polymer, 2016, 99, 767-770.	1.8	14
95	Preparation of a Ductile Biopolyimide Film by Copolymerization. Industrial & Engineering Chemistry Research, 2016, 55, 8761-8766.	1.8	15
96	Extraordinary Swelling of Hydrogels Physically Crosslinked by Megamolecular Chain Sacran. Chemistry Letters, 2016, 45, 339-340.	0.7	3
97	Highly transparent and flexible bio-based polyimide/TiO ₂ and ZrO ₂ hybrid films with tunable refractive index, Abbe number, and memory properties. Nanoscale, 2016, 8, 12793-12802.	2.8	30
98	1H NMR and FT-IR dataset based structural investigation of poly(amic acid)s and polyimides from 4,4′-diaminostilbene. Data in Brief, 2016, 7, 123-128.	0.5	14
99	Ultrahigh Heat-resistant, Transparent Bioplastics from Exotic Amino Acid. Materials Today: Proceedings, 2016, 3, S21-S29.	0.9	11
100	Ultrahigh performance bio-based polyimides from 4,4′-diaminostilbene. Polymer, 2016, 83, 182-189.	1.8	33
101	Fermentation of aromatic lactate monomer and its polymerization to produce highly thermoresistant bioplastics. Polymer Journal, 2016, 48, 81-89.	1.3	6
102	New biopolyimdies possibly applicable to heat-resistant and transparent insulator. , 2015, , .		0
103	Anisotropic swelling in hydrogels formed by cooperatively aligned megamolecules. RSC Advances, 2015, 5, 86723-86729.	1.7	50
104	Salt-induced reinforcement of anionic bio-polyureas with high transparency. Polymer Journal, 2015, 47, 727-732.	1.3	7
105	Uniaxial Swelling in LC Hydrogels Formed by Two-Step Cross-Linking. Macromolecules, 2015, 48, 8615-8621.	2.2	14
106	Molecular Design of Super-high Performance Bioplastics Based on Structures of Microbial Molecules . Journal of the Society of Materials Engineering for Resources of Japan, 2015, 26, 10-15.	0.2	0
107	Syntheses of rigid-rod but degradable biopolyamides from itaconic acid with aromatic diamines. Polymer Degradation and Stability, 2014, 109, 367-372.	2.7	29
108	Novel π-conjugated bio-based polymer, poly(3-amino-4-hydroxybenzoic acid), and its solvatochromism. Pure and Applied Chemistry, 2014, 86, 685-690.	0.9	9

#	Article	IF	CITATIONS
109	Exopolysaccharide production by a unicellular freshwater cyanobacterium Cyanothece sp. isolated from a rice field in Vietnam. Journal of Applied Phycology, 2014, 26, 265-272.	1.5	21
110	Clay-bionanocomposites with sacran megamolecules for the selective uptake of neodymium. Journal of Materials Chemistry A, 2014, 2, 1391-1399.	5.2	33
111	Biobased Polyimides from 4-Aminocinnamic Acid Photodimer. Macromolecules, 2014, 47, 1586-1593.	2.2	91
112	Polarimetry-controlled fluorescent color in oriented LC biopolyesters. Macromolecular Research, 2014, 22, 725-730.	1.0	3
113	Structure and Properties of Sacran, One of Supergiant Polysaccharides, and Its Biomimetic Functionalization. Nippon Gomu Kyokaishi, 2014, 87, 146-152.	0.0	2
114	Doubleâ€netal complexation of heterogels containing cyanobacterial polysaccharides. Journal of Applied Polymer Science, 2013, 128, 676-683.	1.3	6
115	High-performance biocompatible adhesives from plant-derived materials. , 2013, , .		Ο
116	Anionic complexes of MWCNT with supergiant cyanobacterial polyanions. Biopolymers, 2013, 99, 1-9.	1.2	17
117	Syntheses of High-Performance Biopolyamides Derived from Itaconic Acid and Their Environmental Corrosion. Macromolecules, 2013, 46, 3719-3725.	2.2	59
118	Microbial monomers custom-synthesized to build true bio-derived aromatic polymers. Applied Microbiology and Biotechnology, 2013, 97, 8887-8894.	1.7	53
119	Hyperbranched Polycoumarates with Photofunctional Multiple Shape Memory. Angewandte Chemie - International Edition, 2013, 52, 11143-11148.	7.2	46
120	Ionic state and chain conformation for aqueous solutions of supergiant cyanobacterial polysaccharide. Physical Review E, 2013, 87, 042607.	0.8	39
121	Photomechanic Behavior of Main-chain Type of Polycoumarates. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 271-275.	0.1	1
122	Syntheses of hyperbranched liquid-crystalline biopolymers with strong adhesion from phenolic phytomonomers. Pure and Applied Chemistry, 2012, 84, 2559-2568.	0.9	28
123	Anti-Allergic Effects of Vernonia amygdalina Leaf Extracts in Hapten-Induced Atopic Dermatitis-Like Disease in Mice. Allergology International, 2012, 61, 597-607.	1.4	23
124	Anti-inflammatory effects of sacran, a novel polysaccharide from Aphanothece sacrum, on 2,4,6-trinitrochlorobenzene–induced allergic dermatitis in vivo. Annals of Allergy, Asthma and Immunology, 2012, 108, 117-122.e2.	0.5	58
125	Photoshrinkage in Polysaccharide Gels with Trivalent Metal Ions Biomacromolecules, 2012, 13, 4158-4163.	2.6	19
126	Spongy Hydrogels of Cyanobacterial Polyanions Mediate Energy-Saving Electrolytic Metal-Refinement. Industrial & Engineering Chemistry Research, 2012, 51, 8704-8707.	1.8	12

#	Article	IF	CITATIONS
127	Hydrotalcites Catalyze the Acidolysis Polymerization of Phenolic Acid to Create Highly Heatâ€Resistant Bioplastics. Advanced Functional Materials, 2012, 22, 3438-3444.	7.8	21
128	Trivalent metal-mediated gelation of novel supergiant sulfated polysaccharides extracted from Aphanothece stagnina. Colloid and Polymer Science, 2012, 290, 163-172.	1.0	16
129	Effects of adhesive characteristics of the catechol group on fiber-reinforced plastics. Polymer Journal, 2011, 43, 944-947.	1.3	10
130	Mussel-mimetic strong adhesive resin from bio-base polycoumarates. Polymer Journal, 2011, 43, 855-858.	1.3	25
131	Polarized Emission of Wholly Aromatic Bio-Based Copolyesters of a Liquid Crystalline Nature. Polymers, 2011, 3, 861-874.	2.0	7
132	Syntheses of High Molecular Weight Poly(<scp>l</scp> -phenyllactic acid)s by a Direct Polycondensation in the Presence of Stable Lewis Acids. Chemistry Letters, 2011, 40, 584-585.	0.7	12
133	Synthesis of well-defined hyperbranched polymers bio-based on multifunctional phenolic acids and their structure–thermal property relationships. Polymer Degradation and Stability, 2011, 96, 2048-2054.	2.7	30
134	Effects of double photoreactions on polycoumarate photomechanics. Journal of Polymer Science Part A, 2011, 49, 1112-1118.	2.5	12
135	Template preparation of twisted nanoparticles of mesoporous silica. Particuology, 2011, 9, 51-55.	2.0	2
136	Preparation methods of alginate micro-hydrogel particles and evaluation of their electrophoresis behavior for possible electronic paper ink application. Polymer Journal, 2010, 42, 829-833.	1.3	11
137	Terminally-catecholized hyper-branched polymers with high performance adhesive characteristics. Plant Biotechnology, 2010, 27, 293-296.	0.5	26
138	Cyanobacterial Polysaccharide Gels with Efficient Rare-Earth-Metal Sorption. Biomacromolecules, 2010, 11, 1773-1778.	2.6	51
139	Gelation Behavior by the Lanthanoid Adsorption of the Cyanobacterial Extracellular Polysaccharide. Biomacromolecules, 2010, 11, 3172-3177.	2.6	43
140	Unusual Swelling of HPC in Toluene Forming a Microspherical Domain Structure that Causes Christiansen Scattering Coloration. Langmuir, 2010, 26, 1743-1746.	1.6	8
141	High-performance lignin-mimetic polyesters. Plant Biotechnology, 2010, 27, 243-250.	0.5	20
142	Cyanobacteria That Produce Megamolecules with Efficient Self-Orientations. Macromolecules, 2009, 42, 3057-3062.	2.2	69
143	Cyanobacterial Megamolecule Sacran Efficiently Forms LC Gels with Very Heavy Metal Ions. Langmuir, 2009, 25, 8526-8531.	1.6	66
144	Chemically Cross-Linking Effects on the Sorption of Heavy Metal Ions to Hydrogels of Cyanobacterial Megamolecules, Sacran. Transactions of the Materials Research Society of Japan, 2009, 34, 359-362.	0.2	3

#	Article	IF	CITATIONS
145	Swelling and viscoelastic properties of poly(vinyl alcohol) physical gels synthesized using sodium silicate. Reactive and Functional Polymers, 2008, 68, 133-140.	2.0	9
146	Preparation of flexible and transparent polylactic acids films by crystallization manipulation. Journal of Polymer Science Part A, 2008, 46, 6489-6495.	2.5	7
147	Fabrication of Temperatureâ€Responsive Bending Hydrogels with a Nanostructured Gradient. Advanced Materials, 2008, 20, 2080-2083.	11.1	167
148	Photo-Cross-Linking and Cleavage Induced Reversible Size Change of Bio-Based Nanoparticles. Macromolecules, 2008, 41, 8167-8172.	2.2	73
149	Transportation of a microdroplet on an oriented liquid crystal surface. Liquid Crystals, 2008, 35, 661-664.	0.9	5
150	Supergiant Ampholytic Sugar Chains with Imbalanced Charge Ratio Form Saline Ultra-absorbent Hydrogels. Macromolecules, 2008, 41, 4061-4064.	2.2	81
151	Synthesis and properties of coumaric acid derivative homo-polymers. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 75-85.	1.9	43
152	Chemically Cross-Linked Gels Formed by Novel Supergiant Polysaccharide, Sacran. Transactions of the Materials Research Society of Japan, 2008, 33, 497-500.	0.2	2
153	Development of High-Performance Hybrid Resin of Lignin-Mimetic Polymers with Celluloses. Transactions of the Materials Research Society of Japan, 2008, 33, 501-504.	0.2	1
154	Electric Properties of Ionic Polysaccharide <i>Sacran</i> Aqueous Solutions. Transactions of the Materials Research Society of Japan, 2008, 33, 431-434.	0.2	0
155	Extraction of novel sulfated polysaccharides from Aphanothece sacrum (Sur.) Okada, and its spectroscopic characterization. Pure and Applied Chemistry, 2007, 79, 2039-2046.	0.9	53
156	Macroscopic birefringence in liquid crystals from novel cyanobacterial polysaccharide with an extremely high molecular weight. , 2007, , .		1
157	Photo-enhanced performance and photo-tunable degradation in LC ecopolymers. , 2007, , .		0
158	PEG Brush Peptide Nanospheres with Stealth Properties and Chemical Functionality. Macromolecules, 2007, 40, 6385-6392.	2.2	61
159	Particulation of Hyperbranched Aromatic Biopolyesters Self-Organized by Solvent Transformation in Ionic Liquids. Langmuir, 2007, 23, 3485-3488.	1.6	12
160	Anisotropic Gelation Seeded by a Rod-Like Polyelectrolyte. Macromolecules, 2007, 40, 2477-2485.	2.2	19
161	Size-Selective Material Adsorption Property of Polymeric Nanoparticles with Projection Coronas. Chemistry of Materials, 2007, 19, 1044-1052.	3.2	15
162	Highâ€performance functional ecopolymers based on flora and fauna. Chemical Record, 2007, 7, 210-219.	2.9	6

164 北é™,å...^ç«⁻ç§'妿Š€è;"å§å¦é™¢å§å¦ãfžãf†ãfªã,¢ãf«ã,µã,ã;ĩãf³ã,¹ç"ç©¶ç§'金åç"究室Seikei-Kakou, 2007019, 98d100.

165	Water-Driven Thermoresponsive Peptohelical Cushion. Macromolecules, 2006, 39, 2298-2305.	2.2	10
166	Hydrolytic and Enzymatic Degradation of Nanoparticles Based on Amphiphilic Poly(γ-glutamic) Tj ETQq0 0 0 rgBT	/Overlock 2.6	10 Tf 50 62
167	One-Step Advanced Preparation of Surface-Functional Peptide Nanospheres by the Polymerization ofl-PhenylalanineN-Carboxyanhydride with Dual Initiators. Langmuir, 2006, 22, 1396-1399.	1.6	23
168	Biodegradable LC Oligomers with Cranked Branching Points Form Highly Oriented Fibrous Scaffold for Cytoskeletal Orientation. Chemistry of Materials, 2006, 18, 6220-6226.	3.2	34
169	Giant Spherulite Formation in Amorphous Polyanion Membrane by Photopolymerization on Gelatin Matrix. Chemistry Letters, 2006, 35, 1228-1229.	0.7	1
170	Bulk Synthesis of Poly(tert-butyl methacrylate) Long Macromonomer with Narrow Distribution by Atom Transfer Radical Polymerization and Nucleophilic Substitution. Chemistry Letters, 2006, 35, 222-223.	0.7	6
171	Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers. Nature Materials, 2006, 5, 966-970.	13.3	185
172	Rapid deswelling of semi-IPNs with nanosized tracts in response to pH and temperature. Journal of Controlled Release, 2006, 110, 387-394.	4.8	50
173	Rapid and Precise Release from Nano-Tracted Poly(N-isopropylacrylamide) Hydrogels Containing Linear Poly(acrylic acid). Macromolecular Bioscience, 2006, 6, 959-965.	2.1	26
174	Effects of Thermoresponsive Coacervation on the Hydrolytic Degradation of Amphipathic Poly(Î ³ -glutamate)s. Macromolecular Bioscience, 2006, 6, 942-951.	2.1	10
175	Back Cover: Macromol. Biosci. 11/2006. Macromolecular Bioscience, 2006, 6, 968-968.	2.1	0
176	Multifunctional conjugation of proteins on/into bio-nanoparticles prepared by amphiphilic poly(γ-glutamic acid). Journal of Biomaterials Science, Polymer Edition, 2006, 17, 875-892.	1.9	44
177	Solvent-sensitive Nanospheres Prepared by the Self-organization of Polymerizing Hydrophilic Graft Chain Copolymers. Polymer Journal, 2005, 37, 118-125.	1.3	3
178	Successful ATRP Syntheses of Amphiphilic Block Copolymers Poly(styrene-block-N,N-dimethylacrylamide) and Their Self-assembly. Polymer Journal, 2005, 37, 59-64.	1.3	14
179	Development of Liquid Crystalline Hydrogel Soft-Actuator Working under Body Temperature Range. Kobunshi Ronbunshu, 2005, 62, 373-379.	0.2	2
180	One-step nanomorphology control of self-organized projection coronas in uniform polymeric nanoparticles. Polymer, 2005, 46, 12166-12171.	1.8	3

#	Article	IF	CITATIONS
181	Potent activation of antigen-specific T cells by antigen-loaded nanospheres. Immunology Letters, 2005, 98, 123-130.	1.1	36

182 Enhanced effects of lithocholic acid incorporation into liquid-crystalline biopolymer poly(coumaric) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

183	Preparation and characterization of biodegradable nanoparticles based on poly(γ-glutamic acid) with I-phenylalanine as a protein carrier. Journal of Controlled Release, 2005, 108, 226-236.	4.8	178
184	Freeze-Drying of Soft Nanoparticles with Projection Coronas Forms Three-Dimensional Microconstructs. Advanced Materials, 2005, 17, 1638-1643.	11.1	8
185	Anisotropic Polyion-Complex Gels from Template Polymerization. Advanced Materials, 2005, 17, 2695-2699.	11.1	46
186	In vitro Enzymatic Degradation of Nanoparticles Prepared from Hydrophobically-Modified Poly(γ-glutamic acid). Macromolecular Bioscience, 2005, 5, 598-602.	2.1	58
187	Ultrarapid Molecular Release from Poly(N-isopropylacrylamide) Hydrogels Perforated Using Silica Nanoparticle Networks. Macromolecular Chemistry and Physics, 2005, 206, 566-574.	1.1	40
188	Reversible Thermoresponsive Aggregation/Deaggregation of Water-Dispersed Polymeric Nanospheres Exhibiting Structural Transformation. Langmuir, 2005, 21, 9698-9703.	1.6	10
189	Tough, Thin Hydrogel Membranes with Ciant Crystalline Domains Composed of Precisely Synthesized Macromolecules. Macromolecules, 2005, 38, 4861-4867.	2.2	35
190	Self-assembled Soft Nanofibrils of Amphipathic Polypeptides and Their Morphological Transformation. Chemistry of Materials, 2005, 17, 2484-2486.	3.2	27
191	Self-Assembling Bionanoparticles of Poly(Îμ-Lysine) Bearing Cholesterol as aBiomesogen. Biomacromolecules, 2005, 6, 2374-2379.	2.6	18
192	Surface Friction of Poly(dimethyl Siloxane) Gel and Its Transition Phenomenon. Tribology Letters, 2004, 17, 505-511.	1.2	16
193	Specific thermosensitive volume change of biopolymer gels derived from propylated poly(?-glutamate)s. Journal of Polymer Science Part A, 2004, 42, 4492-4501.	2.5	31
194	Preparation and Thermosensitivity of Naturally Occurring Polypeptide Poly(γ-glutamic acid) Derivatives Modified by Propyl Groups. Macromolecular Bioscience, 2004, 4, 407-411.	2.1	34
195	Thermotropic Liquid-Crystalline Polymer Derived from Natural Cinnamoyl Biomonomers. Macromolecular Rapid Communications, 2004, 25, 673-677.	2.0	72
196	Adhesion Behavior of Peritoneal Cells on the Surface of Self-Assembled Triblock Copolymer Hydrogels. Biomacromolecules, 2004, 5, 2447-2455.	2.6	12
197	lgG responses to intranasal immunization with cholera-toxin-immobilized polymeric nanospheres in mice. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 661-669.	1.9	4
198	One-Step Formation of Morphologically Controlled Nanoparticles with Projection Coronas. Macromolecules, 2004, 37, 501-506.	2.2	25

#	Article	IF	CITATIONS
199	Thermoresponsive Shrinkage Triggered by Mesophase Transition in Liquid Crystalline Physical Hydrogels. Macromolecules, 2004, 37, 5385-5388.	2.2	35
200	Liquid Crystalline Hydrogels:Â Mesomorphic Behavior of Amphiphilic Polyacrylates Bearing Cholesterol Mesogen. Macromolecules, 2004, 37, 187-191.	2.2	21
201	Precise Synthesis of ABA Triblock Copolymers Comprised of Poly(ethylene oxide) and Poly(β-benzyl-l-aspartate): A Hierarchical Structure Inducing Excellent Elasticity. Macromolecules, 2004, 37, 1370-1377.	2.2	44
202	Shear-Induced Mesophase Organization of Polyanionic Rigid Rods in Aqueous Solution. Langmuir, 2004, 20, 6518-6520.	1.6	25
203	Mechanically Drawn Hydrogels Uniaxially Orient Hydroxyapatite Crystals and Cell Extension. Chemistry of Materials, 2004, 16, 5596-5601.	3.2	43
204	Stably-dispersed and Surface-functional Bionanoparticles Prepared by Self-assembling Amphipathic Polymers of Hydrophilic Poly(γ-glutamic acid) Bearing Hydrophobic Amino Acids. Chemistry Letters, 2004, 33, 398-399.	0.7	87
205	Formation of Giant Needle-Like Polycation-Bile Acid Complexes. Macromolecular Rapid Communications, 2003, 24, 789-792.	2.0	5
206	Novel functional polymers: Poly(dimethyl siloxane)-polyamide multiblock copolymers. XI. The effects of sequence regularity on the thermal and mechanical properties. Journal of Polymer Science Part A, 2003, 41, 841-852.	2.5	18
207	Liquid Crystalline Gels. 4. Water- and Stress-Induced Mesophase Transition. Langmuir, 2003, 19, 8134-8136.	1.6	15
208	Pb2+-Specific Adsorption/Desorption onto Core-Corona Type Polymeric Nanospheres Bearing Special Anionic Azo-Chromophore. Polymer Journal, 2003, 35, 688-690.	1.3	6
209	Preparation of Uniform Nanospheres with a Hydrophilic Core and a Hydrophobic Corona by the Macromonomer Method. Chemistry Letters, 2003, 32, 1138-1139.	0.7	8
210	Water-Induced Crystallization of Hydrogels. Langmuir, 2002, 18, 965-967.	1.6	20
211	Crystalline Structure and Thermal Behavior of Water-Soluble Copolymers with Pendant Terthiophenes. Macromolecular Chemistry and Physics, 2002, 203, 176-181.	1.1	1
212	Inhibitory Effects of Hydrogels on the Adhesion, Germination, and Development of Zoospores Originating from Laminaria angustata. Macromolecular Bioscience, 2002, 2, 163.	2.1	25
213	Rapid and controlled deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by the templating of interpenetrated nanoporous silica particles. Journal of Polymer Science Part A, 2002, 40, 3542-3547.	2.5	22
214	Thermoresponsive properties of porous poly(N-isopropylacrylamide) hydrogels prepared in the presence of nanosized silica particles and subsequent acid treatment. Journal of Polymer Science Part A, 2002, 40, 4228-4235.	2.5	63
215	Effects of Carboxyls Attached at Alkyl Side Chain Ends on the Lamellar Structure of Hydrogels. Macromolecules, 2001, 34, 6024-6028.	2.2	22
216	Liquid Crystalline Gels. 3. Role of Hydrogen Bonding in the Formation and Stabilization of Mesophase Structures. Macromolecules, 2001, 34, 1470-1476.	2.2	25

#	Article	IF	CITATIONS
217	Preparation of "Confetti―Particles by Dispersion Copolymerization of Acrylonitrile/Styrene with Poly(ethylene glycol) Macromonomer. Chemistry Letters, 2001, 30, 1306-1307.	0.7	12
218	Water-soluble covalent conjugates of bovine serum albumin with anionic poly(N-isopropyl-acrylamide) and their immunogenicity. Biomaterials, 2001, 22, 2383-2392.	5.7	55
219	Ionization and order–disorder transition of hydrogels with ionizable hydrophobic side chain. Journal of Molecular Structure, 2000, 554, 91-97.	1.8	9
220	Hydrogels with the ordered structures. Science and Technology of Advanced Materials, 2000, 1, 201-210.	2.8	10
221	Liquid-Crystalline Hydrogels. 1. Enhanced Effects of Incorporation of Acrylic Acid Units on the Liquid-Crystalline Ordering. Macromolecules, 2000, 33, 412-418.	2.2	33
222	Liquid Crystalline Hydrogels. 2. Effects of Water on the Structural Ordering. Macromolecules, 2000, 33, 4422-4426.	2.2	22
223	Fluorinated Water-Swollen Hydrogels with Molecular and Supramolecular Organization. Macromolecules, 2000, 33, 2535-2538.	2.2	12
224	<title>Shape memory gels with multi-stimuli-responses</title> . , 1999, , .		3
225	Fluorescence study on intermolecular complex formation between mesogenic terphenyldiimide moieties of a thermotropic liquid-crystalline polyimide. Polymer, 1999, 40, 3821-3828.	1.8	10
226	Complexation and Crystallization of Anionic Phthalocyanine with Soluble and Cross-Linked Polycations. Langmuir, 1999, 15, 5670-5675.	1.6	4
227	High-pressure synthesis and properties of aliphatic-aromatic polyimides via nylon-salt-type monomers derived from aliphatic diamines and benzophenonetetracarboxylic acid. Journal of Polymer Science Part A, 1998, 36, 39-47.	2.5	15
228	A new direct preparation of electroconductive polyimide/carbon black composite via polycondensation of nylon-salt-type monomer/carbon black mixture. Journal of Polymer Science Part A, 1998, 36, 1031-1034.	2.5	12
229	Successful synthesis of a 1 : 1 salt monomer derived from bis(4-aminophenyl) ether and pyromellitic acid for direct polycondensation to an aromatic polyimide. Journal of Polymer Science Part A, 1998, 36, 1341-1344.	2.5	13
230	High-Pressure Synthesis and Properties of Aliphaticâ^'Aromatic Polyimides via Nylon-Salt-Type Monomers Derived from Aliphatic Diamines with Pyromellitic Acid and Biphenyltetracarboxylic Acid. Macromolecules, 1997, 30, 1921-1928.	2.2	27
231	Reversible Crystal Deformation Observed in the Main-Chain Type of Liquid Crystalline Polyimide. Macromolecules, 1997, 30, 4244-4246.	2.2	11
232	Synthesis of simple main-chain type polyimides derived from aliphatic diamines and 4,4″-terphenyltetracarboxylic acid, and their thermotropic liquid crystalline behavior. Macromolecular Chemistry and Physics, 1997, 198, 519-530.	1.1	25
233	First Observation of a Thermotropic Liquid Crystal in a Simple Polyimide Derived from 1,11-Diaminoundecane and 4,4''-Terphenyltetracarboxylic Acid. Macromolecules, 1995, 28, 6368-6370.	2.2	29
234	Characterization of mesophase pitch by high-temperature electron spin resonance. Journal of Materials Science Letters, 1990, 9, 351-352.	0.5	5

#	Article	IF	CITATIONS
235	Polarization mapping using birefringent prism. , 0, , .		0
236	Anti-Retroviral Vaccine Using Polymeric Nanoparticles. , 0, , .		0
237	Cell-adhesive gels made of sacran/collagen complexes. Polymer Journal, 0, , .	1.3	2