Tatsuo Kaneko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2295687/publications.pdf

Version: 2024-02-01

237 papers 4,940 citations

38 h-index 149623 56 g-index

252 all docs 252 docs citations

times ranked

252

4284 citing authors

#	Article	IF	Citations
1	Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers. Nature Materials, 2006, 5, 966-970.	13.3	185
2	Preparation and characterization of biodegradable nanoparticles based on poly(\hat{l}^3 -glutamic acid) with l-phenylalanine as a protein carrier. Journal of Controlled Release, 2005, 108, 226-236.	4.8	178
3	Fabrication of Temperatureâ€Responsive Bending Hydrogels with a Nanostructured Gradient. Advanced Materials, 2008, 20, 2080-2083.	11.1	167
4	Hydrolytic and Enzymatic Degradation of Nanoparticles Based on Amphiphilic Poly(γ-glutamic) Tj ETQq0 0 0 rgBT	/Overlock 2.6	10 Tf 50 62
5	Biobased Polyimides from 4-Aminocinnamic Acid Photodimer. Macromolecules, 2014, 47, 1586-1593.	2.2	91
6	Stably-dispersed and Surface-functional Bionanoparticles Prepared by Self-assembling Amphipathic Polymers of Hydrophilic Poly(γ-glutamic acid) Bearing Hydrophobic Amino Acids. Chemistry Letters, 2004, 33, 398-399.	0.7	87
7	Supergiant Ampholytic Sugar Chains with Imbalanced Charge Ratio Form Saline Ultra-absorbent Hydrogels. Macromolecules, 2008, 41, 4061-4064.	2.2	81
8	Photo-Cross-Linking and Cleavage Induced Reversible Size Change of Bio-Based Nanoparticles. Macromolecules, 2008, 41, 8167-8172.	2.2	73
9	Thermotropic Liquid-Crystalline Polymer Derived from Natural Cinnamoyl Biomonomers. Macromolecular Rapid Communications, 2004, 25, 673-677.	2.0	72
10	Tough and Porous Hydrogels Prepared by Simple Lyophilization of LC Gels. ACS Omega, 2017, 2, 5304-5314.	1.6	70
11	Cyanobacteria That Produce Megamolecules with Efficient Self-Orientations. Macromolecules, 2009, 42, 3057-3062.	2.2	69
12	Cyanobacterial Megamolecule Sacran Efficiently Forms LC Gels with Very Heavy Metal Ions. Langmuir, 2009, 25, 8526-8531.	1.6	66
13	Thermoresponsive properties of porous poly(N-isopropylacrylamide) hydrogels prepared in the presence of nanosized silica particles and subsequent acid treatment. Journal of Polymer Science Part A, 2002, 40, 4228-4235.	2.5	63
14	Physically crosslinked-sacran hydrogel films for wound dressing application. International Journal of Biological Macromolecules, 2016, 89, 465-470.	3.6	63
15	PEG Brush Peptide Nanospheres with Stealth Properties and Chemical Functionality. Macromolecules, 2007, 40, 6385-6392.	2.2	61
16	Syntheses of High-Performance Biopolyamides Derived from Itaconic Acid and Their Environmental Corrosion. Macromolecules, 2013, 46, 3719-3725.	2.2	59
17	In vitro Enzymatic Degradation of Nanoparticles Prepared from Hydrophobically-Modified Poly(\hat{l}^3 -glutamic acid). Macromolecular Bioscience, 2005, 5, 598-602.	2.1	58
18	Anti-inflammatory effects of sacran, a novel polysaccharide from Aphanothece sacrum, on 2,4,6-trinitrochlorobenzene–induced allergic dermatitis in vivo. Annals of Allergy, Asthma and Immunology, 2012, 108, 117-122.e2.	0.5	58

#	Article	IF	Citations
19	Water-soluble covalent conjugates of bovine serum albumin with anionic poly(N-isopropyl-acrylamide) and their immunogenicity. Biomaterials, 2001, 22, 2383-2392.	5.7	55
20	Extraction of novel sulfated polysaccharides from Aphanothece sacrum (Sur.) Okada, and its spectroscopic characterization. Pure and Applied Chemistry, 2007, 79, 2039-2046.	0.9	53
21	Microbial monomers custom-synthesized to build true bio-derived aromatic polymers. Applied Microbiology and Biotechnology, 2013, 97, 8887-8894.	1.7	53
22	Enhancement of curcumin wound healing ability by complexation with 2-hydroxypropyl-Î ³ -cyclodextrin in sacran hydrogel film. International Journal of Biological Macromolecules, 2017, 98, 268-276.	3.6	53
23	Cyanobacterial Polysaccharide Gels with Efficient Rare-Earth-Metal Sorption. Biomacromolecules, 2010, 11, 1773-1778.	2.6	51
24	Injectable and Near-Infrared-Responsive Hydrogels Encapsulating Dopamine-Stabilized Gold Nanorods with Long Photothermal Activity Controlled for Tumor Therapy. Biomacromolecules, 2019, 20, 3375-3384.	2.6	51
25	Rapid deswelling of semi-IPNs with nanosized tracts in response to pH and temperature. Journal of Controlled Release, 2006, 110, 387-394.	4.8	50
26	Anisotropic swelling in hydrogels formed by cooperatively aligned megamolecules. RSC Advances, 2015, 5, 86723-86729.	1.7	50
27	Ultrastrong, Transparent Polytruxillamides Derived from Microbial Photodimers. Macromolecules, 2016, 49, 3336-3342.	2.2	50
28	Heavy metal biosorption from aqueous solutions by algae inhabiting rice paddies in Vietnam. Journal of Environmental Chemical Engineering, 2016, 4, 2529-2535.	3.3	49
29	Anisotropic Polyion-Complex Gels from Template Polymerization. Advanced Materials, 2005, 17, 2695-2699.	11.1	46
30	Hyperbranched Polycoumarates with Photofunctional Multiple Shape Memory. Angewandte Chemie - International Edition, 2013, 52, 11143-11148.	7.2	46
31	Enhanced effects of lithocholic acid incorporation into liquid-crystalline biopolymer poly(coumaric) Tj ETQq $1\ 1\ 0$.	784314 rş 5.7	gBT /Overlock
32	Precise Synthesis of ABA Triblock Copolymers Comprised of Poly(ethylene oxide) and Poly(β-benzyl-l-aspartate): A Hierarchical Structure Inducing Excellent Elasticity. Macromolecules, 2004, 37, 1370-1377.	2.2	44
33	Multifunctional conjugation of proteins on/into bio-nanoparticles prepared by amphiphilic poly(γ-glutamic acid). Journal of Biomaterials Science, Polymer Edition, 2006, 17, 875-892.	1.9	44
34	Mechanically Drawn Hydrogels Uniaxially Orient Hydroxyapatite Crystals and Cell Extension. Chemistry of Materials, 2004, 16, 5596-5601.	3.2	43
35	Synthesis and properties of coumaric acid derivative homo-polymers. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 75-85.	1.9	43
36	Gelation Behavior by the Lanthanoid Adsorption of the Cyanobacterial Extracellular Polysaccharide. Biomacromolecules, 2010, 11, 3172-3177.	2.6	43

#	Article	IF	Citations
37	Ultrarapid Molecular Release from Poly(N-isopropylacrylamide) Hydrogels Perforated Using Silica Nanoparticle Networks. Macromolecular Chemistry and Physics, 2005, 206, 566-574.	1.1	40
38	lonic state and chain conformation for aqueous solutions of supergiant cyanobacterial polysaccharide. Physical Review E, 2013, 87, 042607.	0.8	39
39	Bacterial fermentation platform for producing artificial aromatic amines. Scientific Reports, 2016, 6, 25764.	1.6	38
40	Potent activation of antigen-specific T cells by antigen-loaded nanospheres. Immunology Letters, 2005, 98, 123-130.	1.1	36
41	Thermoresponsive Shrinkage Triggered by Mesophase Transition in Liquid Crystalline Physical Hydrogels. Macromolecules, 2004, 37, 5385-5388.	2.2	35
42	Tough, Thin Hydrogel Membranes with Giant Crystalline Domains Composed of Precisely Synthesized Macromolecules. Macromolecules, 2005, 38, 4861-4867.	2.2	35
43	Preparation and Thermosensitivity of Naturally Occurring Polypeptide Poly(\hat{i}^3 -glutamic acid) Derivatives Modified by Propyl Groups. Macromolecular Bioscience, 2004, 4, 407-411.	2.1	34
44	Biodegradable LC Oligomers with Cranked Branching Points Form Highly Oriented Fibrous Scaffold for Cytoskeletal Orientation. Chemistry of Materials, 2006, 18, 6220-6226.	3.2	34
45	Liquid-Crystalline Hydrogels. 1. Enhanced Effects of Incorporation of Acrylic Acid Units on the Liquid-Crystalline Ordering. Macromolecules, 2000, 33, 412-418.	2.2	33
46	Clay-bionanocomposites with sacran megamolecules for the selective uptake of neodymium. Journal of Materials Chemistry A, 2014, 2, 1391-1399.	5.2	33
47	Milliscale Self-Integration of Megamolecule Biopolymers on a Drying Gas–Aqueous Liquid Crystalline Interface. Biomacromolecules, 2016, 17, 2096-2103.	2.6	33
48	Ultrahigh performance bio-based polyimides from 4,4′-diaminostilbene. Polymer, 2016, 83, 182-189.	1.8	33
49	N-Boronated polybenzimidazole for composite electrolyte design of highly ion conducting pseudo solid-state ion gel electrolytes with a high Li-transference number. Journal of Materials Chemistry A, 2019, 7, 4459-4468.	5 . 2	33
50	Specific thermosensitive volume change of biopolymer gels derived from propylated poly(?-glutamate)s. Journal of Polymer Science Part A, 2004, 42, 4492-4501.	2.5	31
51	Recent advances in lignocellulosic biomass white biotechnology for bioplastics. Bioresource Technology, 2022, 344, 126165.	4.8	31
52	Synthesis of well-defined hyperbranched polymers bio-based on multifunctional phenolic acids and their structureâ€"thermal property relationships. Polymer Degradation and Stability, 2011, 96, 2048-2054.	2.7	30
53	Directional control of diffusion and swelling in megamolecular polysaccharide hydrogels. Soft Matter, 2016, 12, 5515-5518.	1.2	30
54	Highly transparent and flexible bio-based polyimide/TiO ₂ and ZrO ₂ hybrid films with tunable refractive index, Abbe number, and memory properties. Nanoscale, 2016, 8, 12793-12802.	2.8	30

#	Article	IF	CITATIONS
55	First Observation of a Thermotropic Liquid Crystal in a Simple Polyimide Derived from 1,11-Diaminoundecane and 4,4"-Terphenyltetracarboxylic Acid. Macromolecules, 1995, 28, 6368-6370.	2.2	29
56	Syntheses of rigid-rod but degradable biopolyamides from itaconic acid with aromatic diamines. Polymer Degradation and Stability, 2014, 109, 367-372.	2.7	29
57	Syntheses of hyperbranched liquid-crystalline biopolymers with strong adhesion from phenolic phytomonomers. Pure and Applied Chemistry, 2012, 84, 2559-2568.	0.9	28
58	High-Pressure Synthesis and Properties of Aliphaticâ 'Aromatic Polyimides via Nylon-Salt-Type Monomers Derived from Aliphatic Diamines with Pyromellitic Acid and Biphenyltetracarboxylic Acid. Macromolecules, 1997, 30, 1921-1928.	2.2	27
59	Self-assembled Soft Nanofibrils of Amphipathic Polypeptides and Their Morphological Transformation. Chemistry of Materials, 2005, 17, 2484-2486.	3.2	27
60	Switchable release nano-reservoirs for co-delivery of drugs via a facile micelle–hydrogel composite. Journal of Materials Chemistry B, 2017, 5, 3488-3497.	2.9	27
61	A Concise Review on the Physicochemical Properties of Biopolymer Blends Prepared in Ionic Liquids. Molecules, 2021, 26, 216.	1.7	27
62	Rapid and Precise Release from Nano-Tracted Poly(N-isopropylacrylamide) Hydrogels Containing Linear Poly(acrylic acid). Macromolecular Bioscience, 2006, 6, 959-965.	2.1	26
63	Terminally-catecholized hyper-branched polymers with high performance adhesive characteristics. Plant Biotechnology, 2010, 27, 293-296.	0.5	26
64	Synthesis of simple main-chain type polyimides derived from aliphatic diamines and $4,4\hat{a}\in^3$ -terphenyltetracarboxylic acid, and their thermotropic liquid crystalline behavior. Macromolecular Chemistry and Physics, 1997, 198, 519-530.	1.1	25
65	Liquid Crystalline Gels. 3. Role of Hydrogen Bonding in the Formation and Stabilization of Mesophase Structures. Macromolecules, 2001, 34, 1470-1476.	2.2	25
66	Inhibitory Effects of Hydrogels on the Adhesion, Germination, and Development of Zoospores Originating from Laminaria angustata. Macromolecular Bioscience, 2002, 2, 163.	2.1	25
67	One-Step Formation of Morphologically Controlled Nanoparticles with Projection Coronas. Macromolecules, 2004, 37, 501-506.	2.2	25
68	Shear-Induced Mesophase Organization of Polyanionic Rigid Rods in Aqueous Solution. Langmuir, 2004, 20, 6518-6520.	1.6	25
69	Mussel-mimetic strong adhesive resin from bio-base polycoumarates. Polymer Journal, 2011, 43, 855-858.	1.3	25
70	High-performance poly(benzoxazole/benzimidazole) bio-basedÂplastics with ultra-low dielectric constant from 3-amino-4-hydroxybenzoic acid. Polymer Degradation and Stability, 2019, 162, 29-35.	2.7	24
71	One-Step Advanced Preparation of Surface-Functional Peptide Nanospheres by the Polymerization ofl-PhenylalanineN-Carboxyanhydride with Dual Initiators. Langmuir, 2006, 22, 1396-1399.	1.6	23
72	Anti-Allergic Effects of Vernonia amygdalina Leaf Extracts in Hapten-Induced Atopic Dermatitis-Like Disease in Mice. Allergology International, 2012, 61, 597-607.	1.4	23

#	Article	IF	CITATIONS
73	Liquid Crystalline Hydrogels. 2. Effects of Water on the Structural Ordering. Macromolecules, 2000, 33, 4422-4426.	2.2	22
74	Effects of Carboxyls Attached at Alkyl Side Chain Ends on the Lamellar Structure of Hydrogels. Macromolecules, 2001, 34, 6024-6028.	2.2	22
75	Rapid and controlled deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by the templating of interpenetrated nanoporous silica particles. Journal of Polymer Science Part A, 2002, 40, 3542-3547.	2.5	22
76	Liquid Crystalline Hydrogels:Â Mesomorphic Behavior of Amphiphilic Polyacrylates Bearing Cholesterol Mesogen. Macromolecules, 2004, 37, 187-191.	2.2	21
77	Hydrotalcites Catalyze the Acidolysis Polymerization of Phenolic Acid to Create Highly Heatâ€Resistant Bioplastics. Advanced Functional Materials, 2012, 22, 3438-3444.	7.8	21
78	Exopolysaccharide production by a unicellular freshwater cyanobacterium Cyanothece sp. isolated from a rice field in Vietnam. Journal of Applied Phycology, 2014, 26, 265-272.	1.5	21
79	Water-Induced Crystallization of Hydrogels. Langmuir, 2002, 18, 965-967.	1.6	20
80	Emergence of polysaccharide membrane walls through macro-space partitioning via interfacial instability. Scientific Reports, 2017, 7, 5615.	1.6	20
81	High-performance lignin-mimetic polyesters. Plant Biotechnology, 2010, 27, 243-250.	0.5	20
82	Anisotropic Gelation Seeded by a Rod-Like Polyelectrolyte. Macromolecules, 2007, 40, 2477-2485.	2.2	19
83	Photoshrinkage in Polysaccharide Gels with Trivalent Metal Ions Biomacromolecules, 2012, 13, 4158-4163.	2.6	19
84	Novel functional polymers: Poly(dimethyl siloxane)-polyamide multiblock copolymers. XI. The effects of sequence regularity on the thermal and mechanical properties. Journal of Polymer Science Part A, 2003, 41, 841-852.	2.5	18
85	Self-Assembling Bionanoparticles of Poly(Îμ-Lysine) Bearing Cholesterol as aBiomesogen. Biomacromolecules, 2005, 6, 2374-2379.	2.6	18
86	Truxillic and truxinic acid-based, bio-derived diesters as potent internal donor in Ziegler-Natta catalyst for propylene polymerization. Applied Catalysis A: General, 2018, 554, 80-87.	2.2	18
87	Formation of Polysaccharide Membranes by Splitting of Evaporative Air–LC Interface. Advanced Materials Interfaces, 2018, 5, 1701219.	1.9	18
88	Anionic complexes of MWCNT with supergiant cyanobacterial polyanions. Biopolymers, 2013, 99, 1-9.	1.2	17
89	Drying-Induced Self-Similar Assembly of Megamolecular Polysaccharides through Nano and Submicron Layering. Langmuir, 2017, 33, 4954-4959.	1.6	17
90	Enhancing effect of \hat{i}^3 -cyclodextrin on wound dressing properties of sacran hydrogel film. International Journal of Biological Macromolecules, 2017, 94, 181-186.	3.6	17

#	Article	IF	Citations
91	Supramolecular micellar drug delivery system based on multi-arm block copolymer for highly effective encapsulation and sustained-release chemotherapy. Journal of Materials Chemistry B, 2019, 7, 5677-5687.	2.9	17
92	Surface Friction of Poly(dimethyl Siloxane) Gel and Its Transition Phenomenon. Tribology Letters, 2004, 17, 505-511.	1.2	16
93	Trivalent metal-mediated gelation of novel supergiant sulfated polysaccharides extracted from Aphanothece stagnina. Colloid and Polymer Science, 2012, 290, 163-172.	1.0	16
94	Synthesis of thermotropic polybenzoxazole using 3-amino-4-hydroxybenzoic acid. Journal of Polymer Research, 2017, 24, 1.	1.2	16
95	Syntheses of Aromatic/Heterocyclic Derived Bioplastics with High Thermal/Mechanical Performance. Industrial & Description of the Research, 2019, 58, 15958-15974.	1.8	16
96	Ultrahigh Thermoresistant Lightweight Bioplastics Developed from Fermentation Products of Cellulosic Feedstock. Advanced Sustainable Systems, 2021, 5, 2000193.	2.7	16
97	High-pressure synthesis and properties of aliphatic-aromatic polyimides via nylon-salt-type monomers derived from aliphatic diamines and benzophenonetetracarboxylic acid. Journal of Polymer Science Part A, 1998, 36, 39-47.	2.5	15
98	Liquid Crystalline Gels. 4. Water- and Stress-Induced Mesophase Transition. Langmuir, 2003, 19, 8134-8136.	1.6	15
99	Size-Selective Material Adsorption Property of Polymeric Nanoparticles with Projection Coronas. Chemistry of Materials, 2007, 19, 1044-1052.	3.2	15
100	Preparation of a Ductile Biopolyimide Film by Copolymerization. Industrial & Engineering Chemistry Research, 2016, 55, 8761-8766.	1.8	15
101	Successful ATRP Syntheses of Amphiphilic Block Copolymers Poly(styrene-block-N,N-dimethylacrylamide) and Their Self-assembly. Polymer Journal, 2005, 37, 59-64.	1.3	14
102	Uniaxial Swelling in LC Hydrogels Formed by Two-Step Cross-Linking. Macromolecules, 2015, 48, 8615-8621.	2.2	14
103	Solution structure of cyanobacterial polysaccharide, sacran. Polymer, 2016, 99, 767-770.	1.8	14
104	1H NMR and FT-IR dataset based structural investigation of poly(amic acid)s and polyimides from 4,4 \hat{a} €2-diaminostilbene. Data in Brief, 2016, 7, 123-128.	0.5	14
105	Development of Functional Bionanocomposites Using Cyanobacterial Polysaccharides. Chemical Record, 2018, 18, 1167-1177.	2.9	14
106	Novel polycondensed biopolyamide generated from biomass-derived 4-aminohydrocinnamic acid. Applied Microbiology and Biotechnology, 2018, 102, 631-639.	1.7	14
107	Bis-imino-acenaphthenequinone-Paraphenylene-Type Condensation Copolymer Binder for Ultralong Cyclable Lithium-Ion Rechargeable Batteries. ACS Applied Energy Materials, 2021, 4, 2231-2240.	2.5	14
108	Successful synthesis of a 1:1 salt monomer derived from bis(4-aminophenyl) ether and pyromellitic acid for direct polycondensation to an aromatic polyimide. Journal of Polymer Science Part A, 1998, 36, 1341-1344.	2.5	13

#	Article	IF	Citations
109	Anti-allergic and Profilaggrin (ProFLG)-mRNA expression modulatory effects of sacran. International Journal of Biological Macromolecules, 2017, 105, 1532-1538.	3.6	13
110	A new direct preparation of electroconductive polyimide/carbon black composite via polycondensation of nylon-salt-type monomer/carbon black mixture. Journal of Polymer Science Part A, 1998, 36, 1031-1034.	2.5	12
111	Fluorinated Water-Swollen Hydrogels with Molecular and Supramolecular Organization. Macromolecules, 2000, 33, 2535-2538.	2.2	12
112	Preparation of "Confetti―Particles by Dispersion Copolymerization of Acrylonitrile/Styrene with Poly(ethylene glycol) Macromonomer. Chemistry Letters, 2001, 30, 1306-1307.	0.7	12
113	Adhesion Behavior of Peritoneal Cells on the Surface of Self-Assembled Triblock Copolymer Hydrogels. Biomacromolecules, 2004, 5, 2447-2455.	2.6	12
114	Particulation of Hyperbranched Aromatic Biopolyesters Self-Organized by Solvent Transformation in Ionic Liquids. Langmuir, 2007, 23, 3485-3488.	1.6	12
115	Syntheses of High Molecular Weight Poly(<scp> </scp> -phenyllactic acid)s by a Direct Polycondensation in the Presence of Stable Lewis Acids. Chemistry Letters, 2011, 40, 584-585.	0.7	12
116	Effects of double photoreactions on polycoumarate photomechanics. Journal of Polymer Science Part A, 2011, 49, 1112-1118.	2.5	12
117	Spongy Hydrogels of Cyanobacterial Polyanions Mediate Energy-Saving Electrolytic Metal-Refinement. Industrial & Engineering Chemistry Research, 2012, 51, 8704-8707.	1.8	12
118	Effects of biopolyimide molecular design on their silica hybrids thermo-mechanical, optical and electrical properties. RSC Advances, 2018, 8, 14009-14016.	1.7	12
119	Preparation of mussel-inspired biopolyester adhesive and comparative study of effects of meta- or para-hydroxyphenylpropionic acid segments on their properties. Polymer, 2019, 165, 152-162.	1.8	12
120	Photodegradation of a semi-aromatic bio-derived polyimide. Polymer Degradation and Stability, 2021, 184, 109472.	2.7	12
121	Mussel-Inspired Epoxy Bioadhesive with Enhanced Interfacial Interactions for Wound Repair. Acta Biomaterialia, 2021, 136, 223-232.	4.1	12
122	Reversible Crystal Deformation Observed in the Main-Chain Type of Liquid Crystalline Polyimide. Macromolecules, 1997, 30, 4244-4246.	2.2	11
123	Preparation methods of alginate micro-hydrogel particles and evaluation of their electrophoresis behavior for possible electronic paper ink application. Polymer Journal, 2010, 42, 829-833.	1.3	11
124	Ultrahigh Heat-resistant, Transparent Bioplastics from Exotic Amino Acid. Materials Today: Proceedings, 2016, 3, S21-S29.	0.9	11
125	Fluorinated and Bio-Based Polyamides with High Transparencies and Low Yellowness Index. Polymers, 2018, 10, 1311.	2.0	11
126	Micelle-Mediated Self-Assembly of Microfibers Bridging Millimeter-Scale Gap To Form Three-Dimensional-Ordered Polysaccharide Membranes. Langmuir, 2018, 34, 13965-13970.	1.6	11

#	Article	IF	CITATIONS
127	Electric Volume Resistivity for Biopolyimide Using 4,4′-Diamino-α-truxillic acid and 1,2,3,4-Cyclobutanetetracarboxylic dianhydride. Polymers, 2019, 11, 1552.	2.0	11
128	Physiological properties and genetic analysis related to exopolysaccharide (EPS) production in the fresh-water unicellular cyanobacterium <i>Aphanothece sacrum</i> (Suizenji Nori). Journal of General and Applied Microbiology, 2019, 65, 39-46.	0.4	11
129	High-temperature resistant water-soluble polymers derived from exotic amino acids. RSC Advances, 2020, 10, 38069-38074.	1.7	11
130	Vaporâ€Sensitive Materials from Polysaccharide Fibers with Selfâ€Assembling Twisted Microstructures. Small, 2020, 16, e2001993.	5.2	11
131	The cyanobacterial polysaccharide sacran: characteristics, structures, and preparation of LC gels. Polymer Journal, 2021, 53, 81-91.	1.3	11
132	Extremely fast charging lithium-ion battery using bio-based polymer-derived heavily nitrogen doped carbon. Chemical Communications, $2021, \dots$	2.2	11
133	Fluorescence study on intermolecular complex formation between mesogenic terphenyldiimide moieties of a thermotropic liquid-crystalline polyimide. Polymer, 1999, 40, 3821-3828.	1.8	10
134	Hydrogels with the ordered structures. Science and Technology of Advanced Materials, 2000, 1 , 201-210.	2.8	10
135	Reversible Thermoresponsive Aggregation/Deaggregation of Water-Dispersed Polymeric Nanospheres Exhibiting Structural Transformation. Langmuir, 2005, 21, 9698-9703.	1.6	10
136	Water-Driven Thermoresponsive Peptohelical Cushion. Macromolecules, 2006, 39, 2298-2305.	2.2	10
137	Effects of Thermoresponsive Coacervation on the Hydrolytic Degradation of Amphipathic Poly (\hat{l}^3 -glutamate)s. Macromolecular Bioscience, 2006, 6, 942-951.	2.1	10
138	Effects of adhesive characteristics of the catechol group on fiber-reinforced plastics. Polymer Journal, 2011, 43, 944-947.	1.3	10
139	Bio-based mesoporous sponges of chitosan conjugated with amino acid-diketopiperazine through oil-in-water emulsions. Journal of Polymer Research, 2017, 24, 1.	1.2	10
140	Molecular Design of Soluble Biopolyimide with High Rigidity. Polymers, 2018, 10, 368.	2.0	10
141	Morphology-Controlled Self-Assembly and Synthesis of Biopolyimide Particles from 4-Amino-l-phenylalanine. ACS Omega, 2020, 5, 2187-2195.	1.6	10
142	Structure and Properties of Hybrid Film Fabricated by Spin-Assisted Layer-by-Layer Assembly of Sacran and Imogolite Nanotubes. Langmuir, 2020, 36, 1718-1726.	1.6	10
143	lonization and order–disorder transition of hydrogels with ionizable hydrophobic side chain. Journal of Molecular Structure, 2000, 554, 91-97.	1.8	9
144	Swelling and viscoelastic properties of poly(vinyl alcohol) physical gels synthesized using sodium silicate. Reactive and Functional Polymers, 2008, 68, 133-140.	2.0	9

#	Article	IF	Citations
145	Novel π-conjugated bio-based polymer, poly(3-amino-4-hydroxybenzoic acid), and its solvatochromism. Pure and Applied Chemistry, 2014, 86, 685-690.	0.9	9
146	Fully Bio-based Aromatic Polyimide Using 4-Aminocinnamic Acid and Mellophanic Dianhydride as Bio-derived Monomers. ECS Transactions, 2018, 88, 99-105.	0.3	9
147	Cationic Polymer Brush/Giant Polysaccharide Sacran Assembly: Structure and Lubricity. Langmuir, 2020, 36, 6494-6501.	1.6	9
148	Soluble Biobased Polyimides from Diaminotruxinic Acid with Unique Bending Angles. Macromolecules, 2021, 54, 10271-10278.	2.2	9
149	Preparation of Uniform Nanospheres with a Hydrophilic Core and a Hydrophobic Corona by the Macromonomer Method. Chemistry Letters, 2003, 32, 1138-1139.	0.7	8
150	Freeze-Drying of Soft Nanoparticles with Projection Coronas Forms Three-Dimensional Microconstructs. Advanced Materials, 2005, 17, 1638-1643.	11.1	8
151	Unusual Swelling of HPC in Toluene Forming a Microspherical Domain Structure that Causes Christiansen Scattering Coloration. Langmuir, 2010, 26, 1743-1746.	1.6	8
152	Optical second-harmonic images of sacran megamolecule aggregates. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 146.	0.8	8
153	Polypeptide gels incorporating the exotic functional aromatic amino acid 4-amino- <scp>I</scp> -phenylalanine. Polymer Chemistry, 2018, 9, 3466-3472.	1.9	8
154	Micropatterned Cell Orientation of Cyanobacterial Liquid-Crystalline Hydrogels. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44834-44843.	4.0	8
155	Micro-deposition control of polysaccharides on evaporative air-LC interface to design quickly swelling hydrogels. Journal of Colloid and Interface Science, 2019, 546, 184-191.	5.0	8
156	Rheopectic Behavior for Aqueous Solutions of Megamolecular Polysaccharide Sacran. Biomolecules, 2020, 10, 155.	1.8	8
157	Synthesis and solvent-controlled self-assembly of diketopiperazine-based polyamides from aspartame. RSC Advances, 2021, 11, 5938-5946.	1.7	8
158	Highâ€Performance BioNylons from Itaconic and Amino Acids with Pepsin Degradability. Advanced Sustainable Systems, 2022, 6, 2100052.	2.7	8
159	Preparation of flexible and transparent polylactic acids films by crystallization manipulation. Journal of Polymer Science Part A, 2008, 46, 6489-6495.	2.5	7
160	Polarized Emission of Wholly Aromatic Bio-Based Copolyesters of a Liquid Crystalline Nature. Polymers, 2011, 3, 861-874.	2.0	7
161	Salt-induced reinforcement of anionic bio-polyureas with high transparency. Polymer Journal, 2015, 47, 727-732.	1.3	7
162	Surface-Selective Control of Cell Orientation on Cyanobacterial Liquid Crystalline Gels. ACS Omega, 2018, 3, 6554-6559.	1.6	7

#	Article	IF	Citations
163	Sacran Hydrogel Film Containing Keratinocyte Growth Factor Accelerates Wound Healing by Stimulating Fibroblast Migration and Re-epithelization. Chemical and Pharmaceutical Bulletin, 2019, 67, 849-854.	0.6	7
164	Fermentation and purification of microbial monomer 4-amminocinnamic acid to produce ultra-high performance bioplastics. Process Biochemistry, 2019, 77, 100-105.	1.8	7
165	Flame retardant transparent films of thermostable biopolyimide metal hybrids. Polymer Degradation and Stability, 2021, 188, 109571.	2.7	7
166	Epidermal growth factor in sacran hydrogel film accelerates fibroblast migration. Journal of Advanced Pharmaceutical Technology and Research, 2020, 11, 74.	0.4	7
167	Pb2+-Specific Adsorption/Desorption onto Core-Corona Type Polymeric Nanospheres Bearing Special Anionic Azo-Chromophore. Polymer Journal, 2003, 35, 688-690.	1.3	6
168	Bulk Synthesis of Poly(tert-butyl methacrylate) Long Macromonomer with Narrow Distribution by Atom Transfer Radical Polymerization and Nucleophilic Substitution. Chemistry Letters, 2006, 35, 222-223.	0.7	6
169	Highâ€performance functional ecopolymers based on flora and fauna. Chemical Record, 2007, 7, 210-219.	2.9	6
170	Doubleâ€metal complexation of heterogels containing cyanobacterial polysaccharides. Journal of Applied Polymer Science, 2013, 128, 676-683.	1.3	6
171	Fermentation of aromatic lactate monomer and its polymerization to produce highly thermoresistant bioplastics. Polymer Journal, 2016, 48, 81-89.	1.3	6
172	Microbe-Derived Itaconic Acid: Novel Route to Biopolyamides. , 2017, , 279-289.		6
173	Aromatic Bioplastics with Heterocycles. ACS Symposium Series, 2018, , 201-218.	0.5	6
174	Robustification of ITO nanolayer by surfaceâ€functionalization of transparent biopolyimide substrates. Journal of Applied Polymer Science, 2018, 135, 46709.	1.3	6
175	Synthesis of pH-responsive polyimide hydrogel from bioderived amino acid. Polymer Journal, 2021, 53, 1223-1230.	1.3	6
176	Stepwise copolymerization of polybenzimidazole for a low dielectric constant and ultrahigh heat resistance. RSC Advances, 2022, 12, 11885-11895.	1.7	6
177	Characterization of mesophase pitch by high-temperature electron spin resonance. Journal of Materials Science Letters, 1990, 9, 351-352.	0.5	5
178	Formation of Giant Needle-Like Polycation-Bile Acid Complexes. Macromolecular Rapid Communications, 2003, 24, 789-792.	2.0	5
179	Transportation of a microdroplet on an oriented liquid crystal surface. Liquid Crystals, 2008, 35, 661-664.	0.9	5
180	Photoexpansion of Biobased Polyesters: Mechanism Analysis by Time-Resolved Measurements of an Amorphous Polycinnamate Hard Film. ACS Applied Materials & Interfaces, 2021, 13, 14569-14576.	4.0	5

#	Article	IF	CITATIONS
181	Complexation and Crystallization of Anionic Phthalocyanine with Soluble and Cross-Linked Polycations. Langmuir, 1999, 15, 5670-5675.	1.6	4
182	IgG responses to intranasal immunization with cholera-toxin-immobilized polymeric nanospheres in mice. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 661-669.	1.9	4
183	Micromorphology Memory in Amphiphilic Polypeptides. Polymer Journal, 2007, 39, 737-744.	1.3	4
184	Effect of Evaporation Rate on Meniscus Splitting with Formation of Vertical Polysaccharide Membranes. Advanced Materials Interfaces, 2019, 6, 1900855.	1.9	4
185	Dataset of various characterizations for novel bio-based plastic poly(benzoxazole-co-benzimidazole) with ultra-low dielectric constant. Data in Brief, 2019, 25, 104114.	0.5	4
186	Biobased liquid crystalline poly(coumarate)s composites and their potential applications. Composites Communications, 2020, 22, 100531.	3.3	4
187	Syntheses of Soluble Biopolyimides Using 4-Aminophenylalanine. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1117-1123.	2.0	4
188	Convective meniscus splitting of polysaccharide microparticles on various surfaces. Scientific Reports, 2021, 11, 767.	1.6	4
189	Magnetorheological Response for Magnetic Elastomers Containing Carbonyl Iron Particles Coated with Poly(methyl methacrylate). Polymers, 2021, 13, 335.	2.0	4
190	Self-Standing Nanomembranes of Super-Tough Plastics. Langmuir, 2022, 38, 5128-5134.	1.6	4
191	<title>Shape memory gels with multi-stimuli-responses</title> ., 1999,,.		3
192	Solvent-sensitive Nanospheres Prepared by the Self-organization of Polymerizing Hydrophilic Graft Chain Copolymers. Polymer Journal, 2005, 37, 118-125.	1.3	3
193	One-step nanomorphology control of self-organized projection coronas in uniform polymeric nanoparticles. Polymer, 2005, 46, 12166-12171.	1.8	3
194	Chemically Cross-Linking Effects on the Sorption of Heavy Metal Ions to Hydrogels of Cyanobacterial Megamolecules, Sacran. Transactions of the Materials Research Society of Japan, 2009, 34, 359-362.	0.2	3
195	Polarimetry-controlled fluorescent color in oriented LC biopolyesters. Macromolecular Research, 2014, 22, 725-730.	1.0	3
196	Extraordinary Swelling of Hydrogels Physically Crosslinked by Megamolecular Chain Sacran. Chemistry Letters, 2016, 45, 339-340.	0.7	3
197	Preparation of Tough Biopolyurea Films from Aromatic Amino Acid as Diamine Monomer. Macromolecular Symposia, 2017, 375, 1600194.	0.4	3
198	Simultaneous Hardening/Ductilizing Effects of Cryogenic Nanohybridization of Biopolyamides with Montmorillonites. ACS Omega, 2017, 2, 9103-9108.	1.6	3

#	Article	IF	Citations
199	Electric Field Effect on Optical Second-harmonic Generation of Amphoteric Megamolecule Aggregates. Journal of the Physical Society of Japan, 2017, 86, 124401.	0.7	3
200	Physiological and genomic analysis of newly-isolated polysaccharide synthesizing cyanobacterium <i>Chroococcus</i> sp. FPU101 and chemical analysis of the exopolysaccharide. Journal of General and Applied Microbiology, 2021, 67, 207-213.	0.4	3
201	Interfacial self-assembly of polysaccharide rods and platelets bridging over capillary lengths. Journal of Colloid and Interface Science, 2021, 591, 483-489.	5.0	3
202	Orientation Analysis of Polymer Chains in Optically Transparent Biopolyimides Having Rigid and Bending Backbones. ChemistrySelect, 2021, 6, 6525-6532.	0.7	3
203	Reinforcement of ultrahigh thermoresistant polybenzimidazole films by hard craters. Polymer Chemistry, 2022, 13, 4086-4089.	1.9	3
204	Development of Liquid Crystalline Hydrogel Soft-Actuator Working under Body Temperature Range. Kobunshi Ronbunshu, 2005, 62, 373-379.	0.2	2
205	Template preparation of twisted nanoparticles of mesoporous silica. Particuology, 2011, 9, 51-55.	2.0	2
206	Structure and Properties of Sacran, One of Supergiant Polysaccharides, and Its Biomimetic Functionalization. Nippon Gomu Kyokaishi, 2014, 87, 146-152.	0.0	2
207	Methods for the Self-integration of Megamolecular Biopolymers on the Drying Air-LC Interface. Journal of Visualized Experiments, 2017, , .	0.2	2
208	Drying-Induced Macro-Space Partitioning of Supra-Polysaccharides and Membrane Formation with Uniaxial Orientation. Kobunshi Ronbunshu, 2018, 75, 1-8.	0.2	2
209	Experimental Investigation of Damage Formation in Planar Fibrous Networks During Stretching. Scientific Reports, 2019, 9, 2816.	1.6	2
210	Anion-Scavenging Biopolyamides from Quaternized 4-Aminocinnamic Acid Photodimers. ACS Sustainable Chemistry and Engineering, 2020, 8, 3786-3795.	3.2	2
211	Chemically Cross-Linked Gels Formed by Novel Supergiant Polysaccharide, Sacran. Transactions of the Materials Research Society of Japan, 2008, 33, 497-500.	0.2	2
212	Synergistic Effects of Polybenzimidazole and Aramide on Enhancing Flameâ€Retardancy and Solubility. Macromolecular Materials and Engineering, 2021, 306, 2100459.	1.7	2
213	Bio-Based Aromatics: Aminobenzoic Acid Derivatives for High-Performance Bioplastics. ACS Symposium Series, 2020, , 99-121.	0.5	2
214	Cell-adhesive gels made of sacran/collagen complexes. Polymer Journal, 0, , .	1.3	2
215	Crystalline Structure and Thermal Behavior of Water-Soluble Copolymers with Pendant Terthiophenes. Macromolecular Chemistry and Physics, 2002, 203, 176-181.	1.1	1
216	Giant Spherulite Formation in Amorphous Polyanion Membrane by Photopolymerization on Gelatin Matrix. Chemistry Letters, 2006, 35, 1228-1229.	0.7	1

#	Article	IF	Citations
217	Macroscopic birefringence in liquid crystals from novel cyanobacterial polysaccharide with an extremely high molecular weight., 2007,,.		1
218	Photomechanic Behavior of Main-chain Type of Polycoumarates. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 271-275.	0.1	1
219	Sample Size Effect of Magnetomechanical Response for Magnetic Elastomers by Using Permanent Magnets. Journal of Nanomaterials, 2017, 2017, 1-7.	1.5	1
220	Critical Electric Field and Activation Energy for Electric Conductivity for Biopolyimide Using 4,4′-Diamino-α-truxillic Acid and 1,2,3,4-Cyclobutanetetracarboxylic Dianhydride. Chemistry Letters, 2020, 49, 929-931.	0.7	1
221	Oriented Polysaccharide Bigels from Interfacial Crosslinking. Chemistry Letters, 2020, 49, 1484-1486.	0.7	1
222	Development of High-Performance Hybrid Resin of Lignin-Mimetic Polymers with Celluloses. Transactions of the Materials Research Society of Japan, 2008, 33, 501-504.	0.2	1
223	Superâ€Moisturizing Materials from Morphological Deformation of Suprapolysaccharides. Macromolecular Rapid Communications, 2022, , 2200163.	2.0	1
224	Polarization mapping using birefringent prism., 0,,.		0
225	Anti-Retroviral Vaccine Using Polymeric Nanoparticles. , 0, , .		0
226	Back Cover: Macromol. Biosci. 11/2006. Macromolecular Bioscience, 2006, 6, 968-968.	2.1	0
227	Photo-enhanced performance and photo-tunable degradation in LC ecopolymers. , 2007, , .		0
228	High-performance biocompatible adhesives from plant-derived materials. , 2013, , .		0
229	New biopolyimdies possibly applicable to heat-resistant and transparent insulator., 2015,,.		0
230	$Characterization \ of \ \hat{l}^2\text{-Ga}< inf>2O< inf>3\ Schottky \ barrier \ diodes.\ ,\ 2018,\ ,\ .$		0
231	Evaporative Selfâ€Assembly: Effect of Evaporation Rate on Meniscus Splitting with Formation of Vertical Polysaccharide Membranes (Adv. Mater. Interfaces 17/2019). Advanced Materials Interfaces, 2019, 6, 1970108.	1.9	0
232	北é™,å…^端ç§'妿Ѐè¡"å§å¦é™¢å§å¦ ãfžãf†ãfªã,¢ãf«ã,µã,ã;"ãf³ã,¹ç"ç©¶ç§' 金åç"究室Seikei-Kakou, í	20 07 919,9	98100.
233	Electric Properties of Ionic Polysaccharide <i>Sacran</i> Aqueous Solutions. Transactions of the Materials Research Society of Japan, 2008, 33, 431-434.	0.2	0
234	Molecular Design of Super-high Performance Bioplastics Based on Structures of Microbial Molecules . Journal of the Society of Materials Engineering for Resources of Japan, 2015, 26, 10-15.	0.2	0

#	Article	IF	CITATIONS
235	Highâ€Performance BioNylons from Itaconic and Amino Acids with Pepsin Degradability (Adv.) Tj ETQq1 1 0.7843	14.rgBT / 2.7gBT /	Overlock 10
236	Development of High-Performance Bioplastic Contributing to a Sustainable Society. Journal of Fiber Science and Technology, 2022, 78, 156-161.	0.0	0
237	Sum-Frequency Generation and Scanning Electron Microscope Studies on Second-Harmonic Generation Active Structures of Sacran Aggregates. E-Journal of Surface Science and Nanotechnology, 2022, 20, .	0.1	0