
Mikhail Sobolev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2295100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonradiative recombination dynamics in InGaN/GaN LED defect system. Superlattices and Microstructures, 2009, 45, 301-307.	1.4	38
2	Deep-level transient spectroscopy in InAs/GaAs laser structures with vertically coupled quantum dots. Semiconductors, 1997, 31, 1074-1079.	0.2	30
3	Generation of the EL2 defect in n-GaAs irradiated by high energy protons. Semiconductor Science and Technology, 1992, 7, 1237-1240.	1.0	22
4	Metastable population of self-organized InAs/GaAs quantum dots. Journal of Electronic Materials, 1999, 28, 491-495.	1.0	21
5	Thermal annealing of defects in InGaAs/GaAs heterostructures with three-dimensional islands. Semiconductors, 2000, 34, 195-204.	0.2	20
6	Hole and electron traps in the InGaAs/GaAs heterostructures with quantum dots. Physica B: Condensed Matter, 1999, 273-274, 959-962.	1.3	19
7	Tunnel coupling in an ensemble of vertically aligned quantum dots at room temperature. Physical Review B, 2009, 80, .	1.1	19
8	Capacitance spectroscopy of deep states in InAs/GaAs quantum dot heterostructures. Semiconductors, 1999, 33, 157-164.	0.2	16
9	Absorption in laser structures with coupled and uncoupled quantum dots in an electric field at room temperature. Semiconductors, 2009, 43, 490-494.	0.2	10
10	Optical properties of quantum-confined heterostructures based on GaP x N y As1 â^' x â^' y alloys. Semiconductors, 2011, 45, 1164-1168.	0.2	10
11	Stark effect in single and vertically coupled InAs/GaAs self-assembled quantum dots. Physica B: Condensed Matter, 2003, 340-342, 1103-1107.	1.3	9
12	Multiperiod quantum-cascade nanoheterostructures: Epitaxy and diagnostics. Semiconductors, 2014, 48, 1600-1604.	0.2	9
13	Study of deep levels in GaAs p–i–n structures. Semiconductors, 2016, 50, 924-928.	0.2	9
14	High-temperature diode formed by epitaxial GaP layers. Technical Physics Letters, 1998, 24, 329-331.	0.2	8
15	Wannier-Stark states in a superlattice of InAs/GaAs quantum dots. Semiconductors, 2010, 44, 761-765.	0.2	8
16	Ultra-wide electroluminescence spectrum of LED heterostructures based on GaPAsN semiconductor alloys. Semiconductors, 2014, 48, 501-504.	0.2	8
17	Misfit dislocation–related deep levels in InGaAs/GaAs and GaAsSb/GaAs p–i–n heterostructures and the effect of these on the relaxation time of nonequilibrium carriers. Journal of Applied Physics, 2018, 123, 161588.	1.1	7
18	Spatial and Quantum Confinement of Si Nanoparticles Deposited by Laser Electrodispersion onto Crystalline Si. Technical Physics Letters, 2018, 44, 287-290.	0.2	7

MIKHAIL SOBOLEV

#	Article	IF	CITATIONS
19	Localization of Holes in an InAsâ^•GaAs Quantum-Dot Molecule. Semiconductors, 2005, 39, 119.	0.2	6
20	Coupling of electron states in the InAs/GaAs quantum dot molecule. Semiconductors, 2006, 40, 331-337.	0.2	6
21	Localized states in the active region of blue LEDs related to a system of extended defects. Technical Physics Letters, 2007, 33, 143-146.	0.2	6
22	Effect of Dislocation-related Deep Levels in Heteroepitaxial InGaAs/GaAs and GaAsSb/GaAs p–i–n Structures on the Relaxation time of Nonequilibrium Carriers. Semiconductors, 2018, 52, 165-171.	0.2	6
23	Metastable defects in as-grown and electron-irradiated. Semiconductor Science and Technology, 1996, 11, 1692-1695.	1.0	5
24	DLTS study of the Wannier–Stark effect in Ge/Si QD superlattices. Physica B: Condensed Matter, 2007, 401-402, 576-579.	1.3	5
25	Room-temperature optical absorption in the InAs/GaAs quantum-dot superlattice under an electric field. Semiconductors, 2011, 45, 1064-1069.	0.2	5
26	Capacitance spectroscopy of structures with Si nanoparticles deposited onto crystalline silicon p-Si. Semiconductor Science and Technology, 2019, 34, 085003.	1.0	5
27	Stark effect in vertically coupled quantum dots in InAs-GaAs heterostructures. Semiconductors, 2002, 36, 1013-1019.	0.2	4
28	Polarization dependence of the stark shift in the absorption edge of InGaAs/GaAs quantum dot heterostructures. Technical Physics Letters, 2007, 33, 686-688.	0.2	4
29	Polarization dependences of electroluminescence and absorption of vertically correlated InAs/GaAs QDs. Semiconductors, 2012, 46, 93-98.	0.2	4
30	Deep-level defects in high-voltage AlGaAs p–i–n diodes and the effect of these defects on the temperature dependence of the minority carrier lifetime. Journal of Applied Physics, 2020, 128, 095705.	1.1	4
31	Effect of In and Al Content on Characteristics of Intrinsic Defects in GaAs-Based Quantum Dots. Semiconductors, 2004, 38, 209.	0.2	3
32	Wannier-stark effect in Ge/Si quantum dot superlattices. Semiconductors, 2008, 42, 305-309.	0.2	3
33	OPTICALLY-DETECTED MICROWAVE RESONANCE IN InGaAsN/GaAs QUANTUM WELLS AND InAs/GaAs QUANTUM DOTS EMITTING AROUND 1.3 μm. International Journal of Nanoscience, 2003, 02, 469-478.	0.4	2
34	The Stark Shift of the Hole States in Separate InAsâ^•GaAs Quantum Dots Grown on (100) and (311)A GaAs Substrates. Semiconductors, 2005, 39, 1053.	0.2	2
35	Coupling of quantum states in InAs/GaAs quantum dot molecule. AIP Conference Proceedings, 2007, , .	0.3	2
36	Stark effect in a multilayer system of coupled InAs/GaAs quantum dots. Technical Physics Letters, 2007, 33, 527-529.	0.2	2

MIKHAIL SOBOLEV

#	Article	IF	CITATIONS
37	Deep-level transient spectroscopy studies of light-emitting diodes based on multiple-quantum-well InGaN/GaN structure. Physica B: Condensed Matter, 2009, 404, 4907-4910.	1.3	2
38	Passive mode-locked laser based on quantum dot superlattice. Technical Physics Letters, 2011, 37, 857-859.	0.2	2
39	Room temperature passive mode-locked laser based on InAs/GaAs quantum-dot superlattice. Nanoscale Research Letters, 2012, 7, 545.	3.1	2
40	Photoinduced conductivity and damage threshold of copper organoacetylenides illuminated with neodymium laser radiation. Soviet Journal of Quantum Electronics, 1976, 6, 151-153.	0.1	1
41	The influence of lattice mismatch upon defects generation and luminescent characteristics of heterostructures in the GaPâ€InP system. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 1981, 16, 169-174.	0.3	1
42	p–n and p–n–p junction arrays in CuInSe2 crystals: Cathodoluminescence and capacitance study. Journal of Applied Physics, 1997, 82, 5167-5175.	1.1	1
43	Cathodoluminescence of p-n-p microstructures in CulnSe2 crystals. Semiconductors, 1997, 31, 92-96.	0.2	1
44	The influence of Coulomb effects on the electron emission and capture in InGaAs/GaAs self-assembled quantum dots. Physica B: Condensed Matter, 2001, 308-310, 1113-1116.	1.3	1
45	Deep levels in the band gap of GaN layers irradiated with protons. Semiconductors, 2002, 36, 1352-1354.	0.2	1
46	Effect of Coulomb charge on properties of arsenic vacancy in GaAs-based quantum dots. Physica B: Condensed Matter, 2003, 340-342, 1133-1136.	1.3	1
47	Wannier-Stark Effect in InAsâ^•GaAs Quantum-Dot Superlattice. AIP Conference Proceedings, 2011, , .	0.3	1
48	Polarization dependences of electroluminescence and absorption of vertically correlated InAs/GaAs QDs. , 2013, , .		1
49	Deep-level transient spectroscopy of InAs/GaAs quantum dot superlattices. , 2014, , .		1
50	Influence of GaAs spacer-layer thickness on quantum coupling and optical polarization in a ten-layer system of vertically correlated InAs/GaAs quantum dots. Semiconductors, 2014, 48, 1031-1035.	0.2	1
51	Impact of the Percolation Effect on the Temperature Dependences of the Capacitance–Voltage Characteristics of Heterostructures Based on Composite Layers of Silicon and Gold Nanoparticles. Semiconductors, 2019, 53, 1393-1397.	0.2	1
52	Capacitance Spectroscopy of Heteroepitaxial AlGaAs/GaAs p–i–n Structures. Semiconductors, 2020, 54, 1260-1266.	0.2	1
53	Deep level defects in GaAs gradual p-i-n junctions after neutron irradiation. Journal of Physics: Conference Series, 2022, 2227, 012019.	0.3	1
54	Effect of Neutron Irradiation on the Spectrum of Deep-Level Defects in GaAs Grown by Liquid-Phase Epitaxy in a Hydrogen and Argon Atmosphere. Semiconductors, 0, , .	0.2	1

MIKHAIL SOBOLEV

#	Article	IF	CITATIONS
55	The study of the influence of deep level defects on GaAs epilayer electrophysical parameters with electron beam and photoelectron paramagnetic resonance methods. Crystal Research and Technology, 1985, 20, 1387-1391.	0.6	0
56	Study of electron capture by quantum dots using deep-level transient spectroscopy. Semiconductors, 2001, 35, 1175-1181.	0.2	0
57	Emission spectra of a laser based on an In(Ga)As/GaAs quantum-dot superlattice. Semiconductors, 2015, 49, 1335-1340.	0.2	Ο
58	10.1007/s11453-008-3011-8. , 2010, 42, 305.		0