List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2294982/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An analysis of teamwork based on self and peer evaluation in higher education. Assessment and Evaluation in Higher Education, 2021, 46, 191-207.	3.9	25
2	Enhanced cytotoxicity of highly water-soluble gold nanoparticle-cyclopeptide conjugates in cancer cells. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111384.	2.5	4
3	PapRIV, a BV-2 microglial cell activating quorum sensing peptide. Scientific Reports, 2021, 11, 10723.	1.6	20
4	D-Amino Acid-Containing Lipopeptides Derived from the Lead Peptide BP100 with Activity against Plant Pathogens. International Journal of Molecular Sciences, 2021, 22, 6631.	1.8	10
5	A Bifunctional Peptide Conjugate That Controls Infections of Erwinia amylovora in Pear Plants. Molecules, 2021, 26, 3426.	1.7	9
6	A Bifunctional Synthetic Peptide With Antimicrobial and Plant Elicitation Properties That Protect Tomato Plants From Bacterial and Fungal Infections. Frontiers in Plant Science, 2021, 12, 756357.	1.7	14
7	Antimicrobial Peptides With Antibiofilm Activity Against Xylella fastidiosa. Frontiers in Microbiology, 2021, 12, 753874.	1.5	10
8	Fatty acid synthase as a feasible biomarker for triple negative breast cancer stem cell subpopulation cultured on electrospun scaffolds. Materials Today Bio, 2021, 12, 100155.	2.6	3
9	Solid-Phase Synthesis of Biaryl Cyclic Peptides Containing a Histidine-Phenylalanine Linkage. International Journal of Peptide Research and Therapeutics, 2020, 26, 695-707.	0.9	6
10	Screening and identification of BP100 peptide conjugates active against Xylella fastidiosa using a viability-qPCR method. BMC Microbiology, 2020, 20, 229.	1.3	18
11	Solid-Phase Synthesis of Biaryl Cyclic Lipopeptides Derived from Arylomycins. ACS Omega, 2020, 5, 23401-23412.	1.6	6
12	A nucleus-directed bombesin derivative for targeted delivery of metallodrugs to cancer cells. Journal of Inorganic Biochemistry, 2020, 212, 111214.	1.5	3
13	Fatty Acid Synthase Inhibitor G28 Shows Anticancer Activity in EGFR Tyrosine Kinase Inhibitor Resistant Lung Adenocarcinoma Models. Cancers, 2020, 12, 1283.	1.7	12
14	Solid-phase synthesis of biaryl bicyclic peptides containing a 3-aryltyrosine or a 4-arylphenylalanine moiety. Beilstein Journal of Organic Chemistry, 2019, 15, 761-768.	1.3	7
15	Solid-phase synthesis of biaryl cyclic peptides containing a histidine-tyrosine linkage. Tetrahedron, 2019, 75, 2625-2636.	1.0	10
16	EGCC-Derivative G28 Shows High Efficacy Inhibiting the Mammosphere-Forming Capacity of Sensitive and Resistant TNBC Models. Molecules, 2019, 24, 1027.	1.7	22
17	Comparison of migration disturbance potency of epigallocatechin gallate (EGCG) synthetic analogs and EGCG PEGylated PLGA nanoparticles in rat neurospheres. Food and Chemical Toxicology, 2019, 123, 195-204.	1.8	10
18	Antimicrobial peptide KSL-W and analogues: Promising agents to control plant diseases. Peptides, 2019, 112, 85-95.	1.2	17

#	Article	IF	CITATIONS
19	Using peer assessment to evaluate teamwork from a multidisciplinary perspective. Assessment and Evaluation in Higher Education, 2018, 43, 14-30.	3.9	12
20	Total Solid-Phase Synthesis of Dehydroxy Fengycin Derivatives. Journal of Organic Chemistry, 2018, 83, 15297-15311.	1.7	5
21	Antimicrobial activity of linear lipopeptides derived from BP100 towards plant pathogens. PLoS ONE, 2018, 13, e0201571.	1.1	23
22	65P Fatty acid synthase (FASN) inhibition effect on EGFR TKIs sensitive and resistant cells. Journal of Thoracic Oncology, 2018, 13, S34-S35.	0.5	0
23	(â^')-Epigallocatechin 3-Gallate Synthetic Analogues Inhibit Fatty Acid Synthase and Show Anticancer Activity in Triple Negative Breast Cancer. Molecules, 2018, 23, 1160.	1.7	37
24	Design, synthesis, and biological evaluation of cyclic peptidotriazoles derived from BPC194 as novel agents for plant protection. Biopolymers, 2017, 108, e23012.	1.2	8
25	Synthesis and Biological Evaluation of Ru(II) and Pt(II) Complexes Bearing Carboxyl Groups as Potential Anticancer Targeted Drugs. Inorganic Chemistry, 2017, 56, 13679-13696.	1.9	38
26	Rational Design of Cyclic Antimicrobial Peptides Based on BPC194 and BPC198. Molecules, 2017, 22, 1054.	1.7	16
27	Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria. Molecules, 2017, 22, 1817.	1.7	7
28	Synthetic Cyclolipopeptides Selective against Microbial, Plant and Animal Cell Targets by Incorporation of D-Amino Acids or Histidine. PLoS ONE, 2016, 11, e0151639.	1.1	15
29	Peptide-mediated vectorization of metal complexes: conjugation strategies and biomedical applications. Dalton Transactions, 2016, 45, 12970-12982.	1.6	37
30	Delivering aminopyridine ligands into cancer cells through conjugation to the cell-penetrating peptide BP16. Organic and Biomolecular Chemistry, 2016, 14, 4061-4070.	1.5	9
31	Solid-Phase Synthesis of Cyclic Depsipeptides Containing a Tyrosine Phenyl Ester Bond. Organic Letters, 2016, 18, 4140-4143.	2.4	5
32	Peer and self-assessment applied to oral presentations from a multidisciplinary perspective. Assessment and Evaluation in Higher Education, 2016, 41, 622-637.	3.9	30
33	Solidâ€Phase Synthesis of Peptide Conjugates Derived from the Antimicrobial Cyclic Decapeptide BPC194. European Journal of Organic Chemistry, 2015, 2015, 1117-1129.	1.2	6
34	Enzyme-triggered delivery of chlorambucil from conjugates based on the cell-penetrating peptide BP16. Organic and Biomolecular Chemistry, 2015, 13, 1470-1480.	1.5	16
35	Design, Preparation, and Characterization of Zn and Cu Metallopeptides Based On Tetradentate Aminopyridine Ligands Showing Enhanced DNA Cleavage Activity. Inorganic Chemistry, 2015, 54, 10542-10558.	1.9	25
36	ldentification of BP16 as a non-toxic cell-penetrating peptide with highly efficient drug delivery properties. Organic and Biomolecular Chemistry, 2014, 12, 1652-1663.	1.5	30

#	Article	IF	CITATIONS
37	Student perceptions of peer assessment: an interdisciplinary study. Assessment and Evaluation in Higher Education, 2014, 39, 592-610.	3.9	90
38	Solidâ€Phase Synthesis of Cyclic Lipopeptidotriazoles. European Journal of Organic Chemistry, 2014, 2014, 4785-4794.	1.2	4
39	Antimicrobial Peptides Incorporating Non-Natural Amino Acids as Agents for Plant Protection. Protein and Peptide Letters, 2014, 21, 357-367.	0.4	20
40	A convenient solid-phase strategy for the synthesis of antimicrobial cyclic lipopeptides. Organic and Biomolecular Chemistry, 2013, 11, 3365.	1.5	10
41	Synthesis of Cyclic Peptidotriazoles with Activity Against Phytopathogenic Bacteria. European Journal of Organic Chemistry, 2013, 2013, 4933-4943.	1.2	13
42	Derivatives of the Antimicrobial Peptide BP100 for Expression in Plant Systems. PLoS ONE, 2013, 8, e85515.	1.1	48
43	Peptidotriazoles with antimicrobial activity against bacterial and fungal plant pathogens. Peptides, 2012, 33, 9-17.	1.2	18
44	Solidâ€Phase Synthesis of Biaryl Cyclic Peptides Containing a 3â€Aryltyrosine. European Journal of Organic Chemistry, 2012, 2012, 6204-6211.	1.2	15
45	Multivalent display of the antimicrobial peptides BP100 and BP143. Beilstein Journal of Organic Chemistry, 2012, 8, 2106-2117.	1.3	9
46	Solidâ€Phase Synthesis of 5â€Arylhistidineâ€Containing Peptides with Antimicrobial Activity Through a Microwaveâ€Assisted Suzuki–Miyaura Crossâ€Coupling. European Journal of Organic Chemistry, 2012, 2012, 4321-4332.	1.2	18
47	Antimicrobial Peptides for Plant Disease Control. From Discovery to Application. ACS Symposium Series, 2012, , 235-261.	0.5	23
48	Cell-penetrating γ-peptide/antimicrobial undecapeptide conjugates with anticancer activity. Tetrahedron, 2012, 68, 4406-4412.	1.0	12
49	Structural basis for the enhanced activity of cyclic antimicrobial peptides: The case of BPC194. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2197-2205.	1.4	55
50	Prediction of Antibacterial Activity from Physicochemical Properties of Antimicrobial Peptides. PLoS ONE, 2011, 6, e28549.	1.1	45
51	Solid-phase synthesis of biaryl cyclic peptides by borylation and microwave-assisted intramolecular Suzuki–Miyaura reaction. Tetrahedron, 2011, 67, 2238-2245.	1.0	43
52	Improvement of the Efficacy of Linear Undecapeptides against Plant-Pathogenic Bacteria by Incorporation of <scp>d</scp> -Amino Acids. Applied and Environmental Microbiology, 2011, 77, 2667-2675.	1.4	51
53	Biaryl Peptides from 4â€lodophenylalanine by Solidâ€Phase Borylation and Suzuki–Miyaura Crossâ€Coupling. European Journal of Organic Chemistry, 2010, 2010, 1461-1468.	1.2	20
54	Escherichia coli Cell Surface Perturbation and Disruption Induced by Antimicrobial Peptides BP100 and pepR. Journal of Biological Chemistry, 2010, 285, 27536-27544.	1.6	193

#	Article	IF	CITATIONS
55	Antimicrobial cyclic decapeptides with anticancer activity. Peptides, 2010, 31, 2017-2026.	1.2	23
56	Sporicidal Activity of Synthetic Antifungal Undecapeptides and Control of <i>Penicillium</i> Rot of Apples. Applied and Environmental Microbiology, 2009, 75, 5563-5569.	1.4	55
57	Synergistic Effects of the Membrane Actions of Cecropin-Melittin Antimicrobial Hybrid Peptide BP100. Biophysical Journal, 2009, 96, 1815-1827.	0.2	83
58	Solid-phase synthesis of 5-arylhistidines via a microwave-assisted Suzuki–Miyaura cross-coupling. Tetrahedron, 2008, 64, 10538-10545.	1.0	24
59	A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides, 2007, 28, 2276-2285.	1.2	145
60	Advances in Solid-Phase Cycloadditions for Heterocyclic Synthesis. ACS Combinatorial Science, 2007, 9, 521-565.	3.3	36
61	On-Line Synthesis of Pseudopeptide Library Incorporating a Benzodiazepinone Turn Mimic:  Biological Evaluation on MC1 Receptors. ACS Combinatorial Science, 2007, 9, 254-262.	3.3	21
62	Synthesis of 5-arylhistidines via a Suzuki–Miyaura cross-coupling. Tetrahedron, 2007, 63, 10445-10453.	1.0	14
63	Microwave-enhanced solid phase synthesis of 1,4,8-triazaspiro[4.5]decan-2-ones. Arkivoc, 2007, 2007, 65-72.	0.3	0
64	De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria. Peptides, 2006, 27, 2567-2574.	1.2	57
65	Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach. Peptides, 2006, 27, 2575-2584.	1.2	55
66	Synthesis of nucleobase-functionalized β-peptoids and β-peptoid hybrids. Tetrahedron Letters, 2006, 47, 8069-8071.	0.7	17
67	Microwave-Assisted Cyclization of Peptides on SynPhaseTM Lanterns. Synlett, 2006, 2006, 1311-1314.	1.0	2
68	Synthesis and Solid-Phase Applications of N-Tetrachlorophthaloyl (TCP) Side-Chain-Protected Amino Acids. Synlett, 2006, 2006, 2743-2746.	1.0	0
69	Inhibition of Plant-Pathogenic Bacteria by Short Synthetic Cecropin A-Melittin Hybrid Peptides. Applied and Environmental Microbiology, 2006, 72, 3302-3308.	1.4	106
70	Cyclic Peptides Containing Biaryl and Biaryl Ether Linkages. International Journal of Peptide Research and Therapeutics, 2005, 11, 53-97.	0.9	72
71	Synthesis of an 8-Benzyl-4-(p-substituted-benzyl)-1,4,8-triazaspiro[4.5]decan-2-one Library on SynPhase TMLanterns. QSAR and Combinatorial Science, 2004, 23, 56-60.	1.5	8
72	Optimization of spiroimidazolidinone derivatives synthesis on solid phase using SynPhaseâ,,¢ Lanterns. Tetrahedron Letters, 2003, 44, 4937-4939.	0.7	7

#	Article	IF	CITATIONS
73	Spiroimidazolidinone Library Derivatives on SynPhase Lanterns. ACS Combinatorial Science, 2003, 5, 356-361.	3.3	14
74	Synthesis of Ascididemine and an Isomer. European Journal of Organic Chemistry, 2000, 2000, 849-855.	1.2	28
75	Preparation of New Pyridoacridine Derivatives and Formal Synthesis of 11-Hydroxyascididemine. Tetrahedron, 2000, 56, 3703-3708.	1.0	12
76	Synthesis of two pyranoquinolinones. What is the structure of cherimoline ?. Tetrahedron, 1998, 54, 4405-4412.	1.0	11
77	Conversion of a 4-quinolone into a 1,6-diazaphenalene. Tetrahedron, 1997, 53, 4511-4520.	1.0	10
78	Synthesis of Methyl 2-Acetylamino-5-(1,3-dithian-2-yl)thiazole-4-carboxylate. Heterocycles, 1997, 45, 1299.	0.4	1
79	Lipopeptides derived from BP100 containing a D-amino acid or a His residue. , 0, , .		0
80	Peptide Conjugates Derived from flg15, Pep13, and PIP1 That Are Active against Plant-Pathogenic Bacteria and Trigger Plant Defense Responses. Applied and Environmental Microbiology, 0, , .	1.4	1