
Yuansheng Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2294896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Src and Epidermal Growth Factor Receptor: Novel Partners in Mediating Chronic Hypoxia–induced Pulmonary Artery Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 5-7.	2.9	1
2	Extracellular Vesicles as Unique Signaling Messengers: Role in Lung Diseases. , 2020, 11, 1351-1369.		12
3	Tribute to Paul M. Vanhoutte, MD, PhD (1940–2019). Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2445-2447.	2.4	0
4	Biology of Vascular Smooth Muscle: Vasoconstriction and Dilatation. , 2017, , .		5
5	Rhynchophylline Ameliorates Endothelial Dysfunction via Src-PI3K/Akt-eNOS Cascade in the Cultured Intrarenal Arteries of Spontaneous Hypertensive Rats. Frontiers in Physiology, 2017, 8, 928.	2.8	29
6	Regulation of Pulmonary Circulation. , 2017, , 786-794.e4.		0
7	Pathophysiology of Pulmonary Hypertension. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2017, 9, i-104.	0.3	0
8	Electrical and Mechanical Properties of Vascular Smooth Muscle. , 2017, , 41-55.		1
9	Cyclic GMP Signaling. , 2017, , 181-195.		0
10	Regulation of Myosin Light Chain Phosphorylation. , 2017, , 155-167.		0
11	Hypoxic Vasoreactivity. , 2017, , 251-266.		0
12	Coronary Vasoreactivity. , 2017, , 199-214.		0
13	Endothelium-Derived Factors. , 2017, , 97-111.		0
14	Aging and Vasoreactivity. , 2017, , 267-286.		0
15	Local Metabolic Factors and Vasoactivity. , 2017, , 113-126.		0
16	Metabolism of Vascular Smooth Muscle. , 2017, , 69-80.		0
17	Neurotransmitters. , 2017, , 83-96.		0

2

#	Article	IF	CITATIONS
19	Endothelium-Independent Hypoxic Contraction Is Prevented Specifically by Nitroglycerin via Inhibition of Akt Kinase in Porcine Coronary Artery. Stem Cells International, 2016, 2016, 1-8.	2.5	2
20	The vasodilatory effect of sulfur dioxide via SGC/cGMP/PKG pathway in association with sulfhydryl-dependent dimerization. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1073-R1080.	1.8	22
21	Endothelium-Dependent Contractions of Isolated Arteries to Thymoquinone Require Biased Activity of Soluble Guanylyl Cyclase with Subsequent Cyclic IMP Production. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 558-568.	2.5	14
22	Conventional and Unconventional Mechanisms for Soluble Guanylyl Cyclase Signaling. Journal of Cardiovascular Pharmacology, 2016, 67, 367-372.	1.9	13
23	Endothelial and Smooth Muscle Cell Interactions in the Pathobiology of Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 451-460.	2.9	101
24	Reduced activity of <scp>SK_C</scp> _a and Naâ€K <scp>ATP</scp> ase underlies the accelerated impairment of <scp>EDH</scp> â€ŧype relaxations in mesenteric arteries of aging spontaneously hypertensive rats. Pharmacology Research and Perspectives, 2015, 3, e00150.	2.4	23
25	Hypoxic Vasospasm Mediated by cIMP. Journal of Cardiovascular Pharmacology, 2015, 65, 545-548.	1.9	23
26	3′,5′-cIMP as Potential Second Messenger in the Vascular Wall. Handbook of Experimental Pharmacology, 2015, 238, 209-228.	1.8	8
27	Protein kinase Cβ mediates downregulated expression of glucagon-like peptide-1 receptor in hypertensive rat renal arteries. Journal of Hypertension, 2015, 33, 784-790.	0.5	11
28	cIMP synthesized by sGC as a mediator of hypoxic contraction of coronary arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H328-H336.	3.2	52
29	Cross Regulation Between cGMP-dependent Protein Kinase and Akt in Vasodilatation of Porcine Pulmonary Artery. Journal of Cardiovascular Pharmacology, 2014, 64, 452-459.	1.9	5
30	Preservation of nitric oxide-induced relaxation of porcine coronary artery: roles of the dimers of soluble guanylyl cyclase, phosphodiesterase type 5, and cGMP-dependent protein kinase. Pflugers Archiv European Journal of Physiology, 2014, 466, 1999-2008.	2.8	6
31	Endothelium-independent hypoxic contraction of porcine coronary arteries may be mediated by activation of phosphoinositide 3-kinase/Akt pathway. Vascular Pharmacology, 2014, 61, 56-62.	2.1	11
32	Protein kinase Cδ contributes to phenylephrine-mediated contraction in the aortae of high fat diet-induced obese mice. Biochemical and Biophysical Research Communications, 2014, 446, 1179-1183.	2.1	9
33	Tissues cIMPly do not lie. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 901-903.	3.0	19
34	Uncoupling Protein-2 Mediates DPP-4 Inhibitor-Induced Restoration of Endothelial Function in Hypertension Through Reducing Oxidative Stress. Antioxidants and Redox Signaling, 2014, 21, 1571-1581.	5.4	76
35	Inhibitory effect of rhynchophylline on contraction of cerebral arterioles to endothelin 1: Role of rho kinase. Journal of Ethnopharmacology, 2014, 155, 147-153.	4.1	12
36	Uncoupling proteinâ€2 mediates the protective action of berberine against oxidative stress in rat insulinoma <scp>INS</scp> â€1 <scp>E</scp> cells and in diabetic mouse islets. British Journal of Pharmacology, 2014, 171, 3246-3254.	5.4	29

#	Article	IF	CITATIONS
37	Sulfhydryl-dependent dimerization of soluble guanylyl cyclase modulates the relaxation of porcine pulmonary arteries to nitric oxide. Pflugers Archiv European Journal of Physiology, 2013, 465, 333-341.	2.8	13
38	Beta blockers, nitric oxide, and cardiovascular disease. Current Opinion in Pharmacology, 2013, 13, 265-273.	3.5	80
39	Sulfhydryl-dependent Dimerization and cGMP-mediated Vasodilatation. Journal of Cardiovascular Pharmacology, 2013, 62, 1-5.	1.9	20
40	Hypoxia induces downregulation of soluble guanylyl cyclase β1 by miR-34c-5p. Journal of Cell Science, 2012, 125, 6117-6126.	2.0	31
41	Inactivation of the E-Prostanoid 3 Receptor Attenuates the Angiotensin II Pressor Response via Decreasing Arterial Contractility. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 3024-3032.	2.4	49
42	Nebivolol. Journal of Cardiovascular Pharmacology, 2012, 59, 16-21.	1.9	29
43	Hydrogen Peroxide Enhances Vasodilatation by Increasing Dimerization of cGMP-Dependent Protein Kinase Type Iα. Circulation Journal, 2012, 76, 1792-1798.	1.6	21
44	Inhibition of Phosphoinositide 3-Kinase Potentiates Relaxation of Porcine Coronary Arteries Induced by Nitroglycerin by Decreasing Phosphodiesterase Type 5 Activity. Circulation Journal, 2012, 76, 230-237.	1.6	9
45	Heterogeneity in relaxation of different sized porcine coronary arteries to nitrovasodilators: role of PKG and MYPT1. Pflugers Archiv European Journal of Physiology, 2012, 463, 257-268.	2.8	12
46	Hypoxic Pulmonary Hypertension of the Newborn. , 2011, 1, 61-79.		19
47	Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide. Cardiovascular Research, 2011, 90, 565-572.	3.8	26
48	The multiple actions of NO. Pflugers Archiv European Journal of Physiology, 2010, 459, 829-839.	2.8	120
49	Cartilage Oligomeric Matrix Protein Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells by Interacting With α ₇ β ₁ Integrin. Circulation Research, 2010, 106, 514-525.	4.5	113
50	Degradation of leucine zipper-positive isoform of MYPT1 may contribute to development of nitrate tolerance. Cardiovascular Research, 2010, 86, 151-159.	3.8	22
51	Regulation of the Pulmonary Circulation in the Fetus and Newborn. Physiological Reviews, 2010, 90, 1291-1335.	28.8	278
52	Increased degradation of MYPT1 contributes to the development of tolerance to nitric oxide in porcine pulmonary artery. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L117-L123.	2.9	16
53	Enhanced pressor response to acute Ang II infusion in mice lacking membrane-associated prostaglandin E2 synthase-1. Acta Pharmacologica Sinica, 2010, 31, 1284-1292.	6.1	18
54	Long-term effects of prenatal hypoxia on endothelium-dependent relaxation responses in pulmonary arteries of adult sheep. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L547-L554.	2.9	22

#	Article	IF	CITATIONS
55	Role of cGMPâ€dependent protein kinase in development of tolerance to nitroglycerine in porcine coronary arteries. British Journal of Pharmacology, 2008, 153, 497-507.	5.4	20
56	Preservation of cGMP-induced relaxation of pulmonary veins of fetal lambs exposed to chronic high altitude hypoxia: role of PKG and Rho kinase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L889-L896.	2.9	24
57	Decreased eNOS activity induced by prenatal hypoxia results from abnormal interactions between eNOS and its regulatory proteins in adult sheep pulmonary arteries. FASEB Journal, 2008, 22, 1209.18.	0.5	0
58	Regulation of cGMP-dependent protein kinase-mediated vasodilation by hypoxia-induced reactive species in ovine fetal pulmonary veins. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1012-L1020.	2.9	38
59	Role of Rho kinases in PKG-mediated relaxation of pulmonary arteries of fetal lambs exposed to chronic high altitude hypoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L678-L684.	2.9	74
60	Protein kinase G regulates the basal tension and plays a major role in nitrovasodilatorâ€induced relaxation of porcine coronary veins. British Journal of Pharmacology, 2007, 152, 1060-1069.	5.4	23
61	cGMP-dependent protein kinase in regulation of basal tone and in nitroglycerin- and nitric-oxide-induced relaxation in porcine coronary artery. Pflugers Archiv European Journal of Physiology, 2007, 454, 913-923.	2.8	28
62	Antihypertensive effects of selective prostaglandin E2 receptor subtype 1 targeting. Journal of Clinical Investigation, 2007, 117, 2496-2505.	8.2	94
63	cGMP-Dependent Protein Kinase in Regulation of the Pulmonary Circulation. Current Respiratory Medicine Reviews, 2006, 2, 373-381.	0.2	3
64	Hypoxia-induced reactive oxygen species downregulate ETB receptor-mediated contraction of rat pulmonary arteries. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L570-L578.	2.9	31
65	Hypoxia Down-Regulates Cyclic Guanidine Monophosphate-Dependent Protein Kinase in Fetal Pulmonary Vascular Smooth Muscle Cell Through Generation of Reactive Oxygen Species and Promotes Development of Pulmonary Hypertension. Chest, 2005, 128, 577S-578S.	0.8	12
66	Parathyroid hormone-related protein-mediated responses in pulmonary arteries and veins of newborn lambs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L60-L66.	2.9	27
67	Role of veins in regulation of pulmonary circulation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L213-L226.	2.9	99
68	cGMP-Dependent Protein Kinase in Regulation of the Perinatal Pulmonary Circulation. , 2005, , 35-45.		1
69	Role of cGMP-dependent protein kinase in development of tolerance to nitric oxide in pulmonary veins of newborn lambs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L786-L792.	2.9	26
70	Effect of oxygen on cyclic GMP-dependent protein kinase-mediated relaxation in ovine fetal pulmonary arteries and veins. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L611-L618.	2.9	32
71	Differential responses of newborn pulmonary arteries and veins to atrial and C-type natriuretic peptides. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H273-H280.	3.2	23
72	Effects of SQ 22536, an adenylyl cyclase inhibitor, on isoproterenol-induced cyclic AMP elevation and relaxation in newborn ovine pulmonary veins. European Journal of Pharmacology, 2002, 436, 227-233.	3.5	12

#	Article	IF	CITATIONS
73	SQ22536 and W-7 inhibit forskolin-induced cAMP elevation but not relaxation in newborn ovine pulmonary veins. European Journal of Pharmacology, 2001, 418, 111-116.	3.5	8
74	Involvement of cGMP-dependent protein kinase in the relaxation of ovine pulmonary arteries to cGMP and cAMP. Journal of Applied Physiology, 2000, 88, 1637-1642.	2.5	67
75	Maturational Changes in Endothelium-Derived Nitric Oxide-Mediated Relaxation of Ovine Pulmonary Arteries. Neonatology, 2000, 77, 123-130.	2.0	14
76	Role of protein kinase G in nitric oxide- and cGMP-induced relaxation of newborn ovine pulmonary veins. Journal of Applied Physiology, 1999, 87, 993-998.	2.5	38
77	Developmental change in magnesium sulfate-induced relaxation of rabbit pulmonary arteries. Journal of Applied Physiology, 1999, 87, 1589-1594.	2.5	9
78	Developmental change in isoproterenol-mediated relaxation of pulmonary veins of fetal and newborn lambs. Journal of Applied Physiology, 1998, 84, 1535-1539.	2.5	14
79	A Single Dose of Antenatal Betamethasone Enhances Isoprenaline and Prostaglandin E ₂ -Induced Relaxation of Preterm Ovine Pulmonary Arteries. Neonatology, 1998, 73, 182-189.	2.0	11
80	Effect of selective phosphodiesterase inhibitors on response of ovine pulmonary arteries to prostaglandin E ₂ . Journal of Applied Physiology, 1998, 84, 13-18.	2.5	22
81	Heterogeneity in Endothelium-Derived Nitric Oxide-Mediated Relaxation of Different Sized Pulmonary Arteries of Newborn Lambs. Pediatric Research, 1998, 44, 723-729.	2.3	28
82	Antenatal Betamethasone Therapy Augments Isoproterenol and Prostaglandin E2-Mediated Relaxation of Preterm Ovine Pulmonary Veins. Pediatric Research, 1997, 42, 545-549.	2.3	6
83	Antenatal betamethasone therapy augments nitric oxide-mediated relaxation of preterm ovine pulmonary veins. Journal of Applied Physiology, 1996, 80, 390-396.	2.5	26
84	Prostaglandins E2 and I2 cause greater relaxations in pulmonary veins than in arteries of newborn lambs. Journal of Applied Physiology, 1996, 81, 2534-2539.	2.5	26
85	Endothelium-Derived Nitric Oxide Plays a Larger Role in Pulmonary Veins Than in Arteries of Newborn Lambs. Circulation Research, 1995, 76, 559-565.	4.5	67
86	\hat{I}^2 -adrenoceptors and the epithelial layer in airways. Life Sciences, 1993, 52, 2123-2130.	4.3	20
87	Attenuation of contractions to acetylcholine in canine bronchi by an endogenous nitric oxideâ€like substance. British Journal of Pharmacology, 1993, 109, 887-891.	5.4	17
88	Respiratory epithelium modulates the responses of canine bronchi to cooling. Journal of Applied Physiology, 1993, 74, 2421-2425.	2.5	4
89	Hypotonic solutions induce epithelium-dependent relaxation of isolated canine bronchi. Lung, 1992, 170, 339-47.	3.3	2
90	Nebivolol Induces Endothelium-Dependent Relaxations of Canine Arteries. Drug Investigation, 1991, 3, 118-119.	0.6	7

#	Article	IF	CITATIONS
91	Nebivolol Induces Endothelium Dependent RelaxatÃons of Canine Coronary Arteries. Journal of Cardiovascular Pharmacology, 1991, 17, 964-969.	1.9	152