
Wei Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2294681/publications.pdf Version: 2024-02-01

WELSONG

#	Article	IF	CITATIONS
1	Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nature Communications, 2019, 10, 4602.	5.8	63
2	Engineering the vasculature for islet transplantation. Acta Biomaterialia, 2019, 95, 131-151.	4.1	65
3	Glycation of collagen matrices promotes breast tumor cell invasion. Integrative Biology (United) Tj ETQq1 1 0.78	34314 rgB 0.6	T /Qyerlock 1
4	Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation. Nature Communications, 2019, 10, 5262.	5.8	119
5	Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E263-E272.	3.3	137
6	A drip-crosslinked tough hydrogel. Polymer, 2018, 135, 327-330.	1.8	16
7	High-water-content and resilient PEG-containing hydrogels with low fibrotic response. Acta Biomaterialia, 2017, 53, 100-108.	4.1	47
8	Efficient generation of endothelial cells from human pluripotent stem cells and characterization of their functional properties. Journal of Biomedical Materials Research - Part A, 2016, 104, 678-687.	2.1	5
9	Drug-Eluting Conformal Coatings on Individual Cells. Cellular and Molecular Bioengineering, 2016, 9, 382-397.	1.0	13
10	Dynamic self-organization of microwell-aggregated cellular mixtures. Soft Matter, 2016, 12, 5739-5746.	1.2	33
11	Engraftment of human induced pluripotent stem cell-derived hepatocytes in immunocompetent mice via 3D co-aggregation and encapsulation. Scientific Reports, 2015, 5, 16884.	1.6	72
12	Designing compartmentalized hydrogel microparticles for cell encapsulation and scalable 3D cell culture. Journal of Materials Chemistry B, 2015, 3, 353-360.	2.9	86
13	Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies. Biomaterials, 2015, 37, 40-48.	5.7	81
14	Fabrication of Au hybrid protein chips and its application to SERS-based bioassay. Vibrational Spectroscopy, 2014, 70, 49-52.	1.2	6
15	Nanofibrous Microposts and Microwells of Controlled Shapes and Their Hybridization with Hydrogels for Cell Encapsulation. ACS Applied Materials & Interfaces, 2014, 6, 7038-7044.	4.0	28
16	Influence of cell protrusion and spreading on adipogenic differentiation of mesenchymal stem cells on micropatterned surfaces. Soft Matter, 2013, 9, 4160.	1.2	29
17	The osteogenic differentiation of mesenchymal stem cells by controlled cell–cell interaction on micropatterned surfaces. Journal of Biomedical Materials Research - Part A, 2013, 101, 3388-3395.	2.1	43
18	Exploring adipogenic differentiation of a single stem cell on poly(acrylic acid) and polystyrene micropatterns. Soft Matter, 2012, 8, 8429.	1.2	22

Wei Song

#	Article	IF	CITATIONS
19	Adipogenic Differentiation of Individual Mesenchymal Stem Cell on Different Geometric Micropatterns. Langmuir, 2011, 27, 6155-6162.	1.6	103
20	Dependence of Spreading and Differentiation of Mesenchymal Stem Cells on Micropatterned Surface Area. Journal of Nanomaterials, 2011, 2011, 1-9.	1.5	47
21	Fabrication of cell pattern on poly(dimethylsiloxane) by vacuum ultraviolet lithography. Colloids and Surfaces B: Biointerfaces, 2010, 76, 381-385.	2.5	19
22	Protein adsorption and cell adhesion on polyurethane/Pluronic® surface with lotus leaf-like topography. Colloids and Surfaces B: Biointerfaces, 2010, 77, 234-239.	2.5	54
23	The effect of surface microtopography of poly(dimethylsiloxane) on protein adsorption, platelet and cell adhesion. Colloids and Surfaces B: Biointerfaces, 2009, 71, 275-281.	2.5	76
24	Immobilization of proteins on metal ion chelated polymer surfaces. Colloids and Surfaces B: Biointerfaces, 2009, 69, 71-76.	2.5	12
25	Biocompatible polymer materials: Role of protein–surface interactions. Progress in Polymer Science, 2008, 33, 1059-1087.	11.8	617
26	Protein adsorption on materials surfaces with nano-topography. Science Bulletin, 2007, 52, 3169-3173.	1.7	49