Yasuo Matubara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2294551/publications.pdf

Version: 2024-02-01

759233 794594 20 752 12 19 citations h-index g-index papers 21 21 21 1179 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Small yet Complete Framework for a Potentiostat, Galvanostat, and Electrochemical Impedance Spectrometer. Journal of Chemical Education, 2021, 98, 3362-3370.	2.3	11
2	A Small All-in-One Photon-Counting Device for Measuring Luminescence Decays to Determine the Lifetimes of Photoexcited Materials. Journal of Chemical Education, 2020, 97, 300-304.	2.3	3
3	A Bi-functional Second Coordination Sphere for Electrocatalytic CO ₂ Reduction: The Concerted Improvement by a Local Proton Source and Local Coulombic Interactions. Chemistry Letters, 2020, 49, 315-317.	1.3	11
4	Standard Electrode Potentials for Electrochemical Hydrogen Production, Carbon Dioxide Reduction, and Oxygen Reduction Reactions in $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ -Dimethylacetamide. Chemistry Letters, 2020, 49, 915-917.	1.3	5
5	Unified Benchmarking of Electrocatalysts in Noninnocent Second Coordination Spheres for CO ₂ Reduction. ACS Energy Letters, 2019, 4, 1999-2004.	17.4	29
6	Thermodynamic Cycles Relevant to Hydrogenation of CO ₂ to Formic Acid in Water and Acetonitrile. Chemistry Letters, 2019, 48, 627-629.	1.3	9
7	Boundary Temperatures at Which Ionic Liquid Solutions Dissolving an Electroactive Ion Start to Exhibit a Colligative Behavior. Chemistry Letters, 2019, 48, 925-927.	1.3	O
8	Standard Electrode Potentials for the Reduction of CO ₂ to CO in Acetonitrile–Water Mixtures Determined Using a Generalized Method for Proton-Coupled Electron-Transfer Reactions. ACS Energy Letters, 2017, 2, 1886-1891.	17.4	53
9	Experimental Insight into the Thermodynamics of the Dissolution of Electrolytes in Room-Temperature Ionic Liquids: From the Mass Action Law to the Absolute Standard Chemical Potential of a Proton. ACS Omega, 2016, 1, 1393-1411.	3.5	16
10	Striking Differences in Properties of Geometric Isomers of [Ir(tpy)(ppy)H] ⁺ : Experimental and Computational Studies of their Hydricities, Interaction with CO ₂ , and Photochemistry. Angewandte Chemie - International Edition, 2015, 54, 14128-14132.	13.8	51
11	Thermodynamic Aspects of Electrocatalytic CO ₂ Reduction in Acetonitrile and with an lonic Liquid as Solvent or Electrolyte. ACS Catalysis, 2015, 5, 6440-6452.	11.2	162
12	Hydride Reduction of NAD(P) ⁺ Model Compounds with a Ru(II)–Hydrido Complex. Organometallics, 2015, 34, 5530-5539.	2.3	13
13	Reactivity of a fac-ReCl(α-diimine)(CO) ₃ complex with an NAD ⁺ model ligand toward CO ₂ reduction. Chemical Communications, 2014, 50, 728-730.	4.1	22
14	Electrocatalytic CO ₂ Reduction with a Homogeneous Catalyst in Ionic Liquid: High Catalytic Activity at Low Overpotential. Journal of Physical Chemistry Letters, 2014, 5, 2033-2038.	4.6	108
15	Formation of η ² -Coordinated Dihydropyridine–Ruthenium(II) Complexes by Hydride Transfer from Ruthenium(II) to Pyridinium Cations. Organometallics, 2013, 32, 6162-6165.	2.3	11
16	Photochemistry of <i>fac</i> â€{Re(bpy)(CO) ₃ Cl]. Chemistry - A European Journal, 2012, 18, 15722-15734.	3.3	74
17	Thermodynamic and Kinetic Hydricity of Ruthenium(II) Hydride Complexes. Journal of the American Chemical Society, 2012, 134, 15743-15757.	13.7	117
18	Development of an Efficient and Durable Photocatalytic System for Hydride Reduction of an NAD(P) ⁺ Model Compound Using a Ruthenium(II) Complex Based on Mechanistic Studies. Journal of the American Chemical Society, 2010, 132, 10547-10552.	13.7	35

YASUO MATUBARA

#	Article	lF	CITATIONS
19	Quantitative Photochemical Formation of [Ru(tpy)(bpy)H] ⁺ . Inorganic Chemistry, 2009, 48, 10138-10145.	4.0	12
20	Colloidal platinum nanoparticles dispersed by polyvinylpyrrolidone and poly(diallyldimethylammonium chloride) with high catalytic activity for hydrogen production based on formate decomposition. Sustainable Energy and Fuels, 0, , .	4.9	0