I J Daubar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2293881/publications.pdf

Version: 2024-02-01

172386 149623 3,185 65 29 56 h-index citations g-index papers 69 69 69 2230 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Seismic constraints from a Mars impact experiment using InSight and Perseverance. Nature Astronomy, 2022, 6, 59-64.	4.2	9
2	In Situ and Orbital Stratigraphic Characterization of the InSight Landing Site—A Type Example of a Regolithâ€Covered Lava Plain on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	17
3	New Craters on Mars: An Updated Catalog. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	14
4	Using machine learning to reduce observational biases when detecting new impacts on Mars. Icarus, 2022, 386, 115146.	1.1	3
5	Meteoroid Fragmentation in the Martian Atmosphere and the Formation of Crater Clusters. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	6
6	Challenges in crater chronology on Mars as reflected in Jezero crater. , 2021, , 97-122.		5
7	Seismic Efficiency for Simple Crater Formation in the Martian Top Crust Analog. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006662.	1.5	6
8	Widespread Exposures of Extensive Clean Shallow Ice in the Midlatitudes of Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006617.	1.5	29
9	Listening for the Landing: Seismic Detections of Perseverance's Arrival at Mars With InSight. Earth and Space Science, 2021, 8, e2020EA001585.	1.1	5
10	Vortexâ€Dominated Aeolian Activity at InSight's Landing Site, Part 1: Multiâ€Instrument Observations, Analysis, and Implications. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006757.	1.5	23
11	Active Mars: A Dynamic World. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006876.	1.5	17
12	Soil Thermophysical Properties Near the InSight Lander Derived From 50 Sols of Radiometer Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006859.	1.5	22
13	Seasonal seismic activity on Mars. Earth and Planetary Science Letters, 2021, 576, 117171.	1.8	13
14	Numerical Simulations of the Apollo Sâ€IVB Artificial Impacts on the Moon. Earth and Space Science, 2021, 8, e2021EA001887.	1.1	7
15	Questions to Heaven. Astronomy and Geophysics, 2021, 62, 6.22-6.25.	0.1	2
16	Terrestrial single-station analog for constraining the martian core and deep interior: Implications for InSight. Icarus, 2020, 335, 113396.	1.1	2
17	The Seismic Moment and Seismic Efficiency of Small Impacts on Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006540.	1.5	16
18	A New Crater Near InSight: Implications for Seismic Impact Detectability on Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006382.	1.5	24

#	Article	IF	Citations
19	Location and Setting of the Mars InSight Lander, Instruments, and Landing Site. Earth and Space Science, 2020, 7, e2020EA001248.	1.1	34
20	Assessment of InSight Landing Site Predictions. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006502.	1.5	32
21	Geology of the InSight landing site on Mars. Nature Communications, 2020, 11, 1014.	5.8	107
22	The atmosphere of Mars as observed by InSight. Nature Geoscience, 2020, 13, 190-198.	5.4	161
23	Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 2020, 13, 213-220.	5.4	207
24	The seismicity of Mars. Nature Geoscience, 2020, 13, 205-212.	5.4	194
25	Monitoring of Dust Devil Tracks Around the InSight Landing Site, Mars, and Comparison With In Situ Atmospheric Data. Geophysical Research Letters, 2020, 47, e2020GL087234.	1.5	30
26	Initial results from the InSight mission on Mars. Nature Geoscience, 2020, 13, 183-189.	5.4	274
27	Enabling Onboard Detection of Events of Scientific Interest for the Europa Clipper Spacecraft. , 2019, , .		11
28	SEIS: Insight's Seismic Experiment for Internal Structure of Mars. Space Science Reviews, 2019, 215, 12.	3.7	238
29	Composition of Amazonian volcanic materials in Tharsis and Elysium, Mars, from MRO/CRISM reflectance spectra. Icarus, 2019, 328, 274-286.	1.1	27
30	Dark halos produced by current impact cratering on Mars. Icarus, 2019, 328, 45-57.	1.1	6
31	Recently Formed Crater Clusters on Mars. Journal of Geophysical Research E: Planets, 2019, 124, 958-969.	1.5	15
32	The Seismic Signatures of Recently Formed Impact Craters on Mars. Journal of Geophysical Research E: Planets, 2019, 124, 3063-3081.	1.5	6
33	SURFACE ALTERATION FROM LANDING INSIGHT ON MARS AND ITS IMPLICATIONS FOR SHALLOW REGOLITH STRUCTURE., 2019, , .		5
34	Martian cratering 12. Utilizing primary crater clusters to study crater populations and meteoroid properties. Meteoritics and Planetary Science, 2018, 53, 672-686.	0.7	8
35	Measuring impact crater depth throughout the solar system. Meteoritics and Planetary Science, 2018, 53, 583-637.	0.7	41
36	Inversion of Meteor Rayleigh Waves on Earth and Modeling of Air Coupled Rayleigh Waves on Mars. Space Science Reviews, 2018, 214, 1.	3.7	5

#	Article	IF	Citations
37	The Marsquake Service: Securing Daily Analysis of SEIS Data and Building the Martian Seismicity Catalogue for InSight. Space Science Reviews, 2018, 214, 1.	3.7	41
38	Impact-Seismic Investigations of the InSight Mission. Space Science Reviews, 2018, 214, 1.	3.7	48
39	Atmospheric Science with InSight. Space Science Reviews, 2018, 214, 1.	3.7	88
40	Geology and Physical Properties Investigations by the InSight Lander. Space Science Reviews, 2018, 214, 1.	3.7	77
41	A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site. Space Science Reviews, 2018, 214, 1.	3.7	58
42	Selection of the InSight Landing Site. Space Science Reviews, 2017, 211, 5-95.	3.7	150
43	Observations of MeV electrons in Jupiter's innermost radiation belts and polar regions by the Juno radiation monitoring investigation: Perijoves 1 and 3. Geophysical Research Letters, 2017, 44, 4481-4488.	1.5	29
44	Martian cratering 11. Utilizing decameter scale crater populations to study Martian history. Meteoritics and Planetary Science, 2017, 52, 493-510.	0.7	55
45	Preparing for InSight: An Invitation to Participate in a Blind Test for Martian Seismicity. Seismological Research Letters, 2017, 88, 1290-1302.	0.8	37
46	Bolide Airbursts as a Seismic Source for the 2018 Mars InSight Mission. Space Science Reviews, 2017, 211, 525-545.	3.7	20
47	The Juno Radiation Monitoring (RM) Investigation. Space Science Reviews, 2017, 213, 507-545.	3.7	29
48	A revised surface age for the North Polar Layered Deposits of Mars. Geophysical Research Letters, 2016, 43, 3060-3068.	1.5	42
49	Episodes of fluvial and volcanic activity in Mangala Valles, Mars. Icarus, 2015, 245, 333-347.	1.1	18
50	Secondary Crater Cluster. , 2015, , 1889-1890.		0
51	Crater Cluster (Atmospheric Breakup). , 2015, , 413-416.		0
52	Crater Cluster (Atmospheric Breakup). , 2014, , 1-5.		0
53	The morphology of small fresh craters on Mars and the Moon. Journal of Geophysical Research E: Planets, 2014, 119, 2620-2639.	1.5	66
54	HiRISE observations of new impact craters exposing Martian ground ice. Journal of Geophysical Research E: Planets, 2014, 119, 109-127.	1.5	98

#	Article	lF	CITATIONS
55	Secondary Crater Cluster. , 2014, , 1-3.		O
56	Ground penetrating radar geologic field studies of the ejecta of Barringer Meteorite Crater, Arizona, as a planetary analog. Journal of Geophysical Research E: Planets, 2013, 118, 1915-1933.	1.5	8
57	Impact airblast triggers dust avalanches on Mars. Icarus, 2012, 217, 194-201.	1.1	25
58	The High Resolution Imaging Science Experiment (HiRISE) during MRO's Primary Science Phase (PSP). Icarus, 2010, 205, 2-37.	1.1	153
59	Phoenix and MRO coordinated atmospheric measurements. Journal of Geophysical Research, 2010, 115, .	3.3	40
60	Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters. Science, 2009, 325, 1674-1676.	6.0	279
61	Seasonally active frostâ€dust avalanches on a north polar scarp of Mars captured by HiRISE. Geophysical Research Letters, 2008, 35, .	1.5	48
62	Northwest Africa 482: A crystalline impactâ€melt breccia from the lunar highlands. Meteoritics and Planetary Science, 2002, 37, 1797-1813.	0.7	30
63	The Approaching Death of the OH/IR star IRAS 18455+0448. Astrophysical Journal, 2001, 548, L77-L80.	1.6	15
64	The Structure of Jupiter's Ring System as Revealed by the Galileo Imaging Experiment. Icarus, 1999, 138, 188-213.	1.1	104
65	Preparing for InSight: Evaluation of the Blind Test for Martian Seismicity. Seismological Research Letters, 0, , .	0.8	5