
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2293808/publications.pdf Version: 2024-02-01

Δνιδαζει Πλνιει

#	Article	IF	CITATIONS
1	Dipyrazolopyridine derivatives as bright blue electroluminescent materials. Applied Physics Letters, 2000, 77, 933.	3.3	98
2	Organic Light-Emitting Diodes Based on Variously Substituted Pyrazoloquinolines as Emitting Material. Chemistry of Materials, 2001, 13, 1207-1212.	6.7	89
3	Sharp green electroluminescence from 1H-pyrazolo[3,4-b]quinoline-based light-emitting diodes. Applied Physics Letters, 2000, 77, 1575-1577.	3.3	82
4	Blue electroluminescence of novel pyrazoloquinoline and bispyrazolopyridine derivatives in doped polymer matrices. Journal of Materials Chemistry, 1997, 7, 2323-2325.	6.7	78
5	Organic Light-Emitting Diodes Based on 2-(Stilben-4-yl)benzoxazole Derivatives:Â An Implication on the Emission Mechanism. Chemistry of Materials, 2001, 13, 2441-2446.	6.7	77
6	Electroluminescence of 6-R-1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline-based organic light-emitting diodes (R=F, Br, Cl, CH3, C2H3 and N(C6H5)2). Materials Letters, 2007, 61, 3292-3295.	2.6	72
7	The efficient blue photoluminescence of pyrazolo-[3,4-b]-quinoline derivatives and the energy transfer in polymer matrices. Journal of Luminescence, 2000, 86, 1-14.	3.1	68
8	Blue Light-Emitting Diodes Based on Dipyrazolopyridine Derivatives. Chemistry of Materials, 2000, 12, 2788-2793.	6.7	67
9	1,3-Diphenyl-1H-pyrazolo[3,4-b]quinoline:  A Versatile Fluorophore for the Design of Brightly Emissive Molecular Sensors. Organic Letters, 2002, 4, 4647-4650.	4.6	59
10	Optical poling of oligoether acrylate photopolymers doped by stilbene-benzoate derivative chromophores. Journal of Physics Condensed Matter, 2004, 16, 231-239.	1.8	58
11	Electroluminescence from novel pyrazole-based polymer systems. Journal of Materials Chemistry, 1999, 9, 339-342.	6.7	56
12	Emissive Properties and Intramolecular Charge Transfer of Pyrazoloquinoline Derivatives. Journal of Fluorescence, 1997, 7, 301-309.	2.5	43
13	Pyrazoloquinoline derivatives as efficient blue electroluminescent materials. Journal of Materials Chemistry, 2001, 11, 768-772.	6.7	43
14	Poly(N-vinylcarbazole) doped with a pyrazoloquinoline dye: A deep blue light-emitting composite for light-emitting diode applications. Journal of Applied Physics, 2006, 99, 024505.	2.5	42
15	Fluorescence Properties of Donor–Acceptor-Substituted Pyrazoloquinolines. Journal of Fluorescence, 1998, 8, 375-387.	2.5	37
16	1H-pyrazolo[3,4-b]quinoline and 1H-pyrazolo[3,4-b]quinoxaline derivatives as promising materials for optoelectronic applications. Optical Materials, 2009, 32, 267-273.	3.6	37
17	Photoluminescence of 1,3-Diphenyl-1H-pyrazolo[3,4-b]quinoline and its derivatives: Experiment and quantum chemical simulations. Optics Communications, 2007, 271, 16-23.	2.1	36
18	Electroluminescence of several pyrazoloquinoline and quinoksaline derivatives. Materials Letters, 2006, 60, 3301-3306.	2.6	35

#	Article	IF	CITATIONS
19	Photoluminescence and electroluminescence of methoxy and carboethoxy derivatives of 1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 69, 22-26.	3.9	35
20	Optical absorption of 1H-pyrazolo[3,4-b]quinoline and its derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 3101-3106.	3.9	34
21	Optical absorption measurements and quantum-chemical simulations on 1H-pyrazolo[3,4-b]quinoline derivatives. Optics Communications, 2003, 227, 115-123.	2.1	32
22	Influence of TiO2 nanoparticles on the photovoltaic efficiency of the ITO/PEDOT:PSS/fluorine copolymers/polythiophene: TiO2/Al architecture. Journal of Materials Science: Materials in Electronics, 2012, 23, 2057-2064.	2.2	32
23	Optical absorption of 1,3-diphenyl-1H-Pyrazolo[3,4-b]quinoline and its derivatives. Optics Communications, 2006, 268, 64-74.	2.1	31
24	Push-pull benzoxazole based stilbenes as new promising electrooptics materials. Journal of Materials Science: Materials in Electronics, 2007, 18, 519-526.	2.2	31
25	Some anthracene derivatives with N,N-dimethylamine moieties as materials for photovoltaic devices. Materials Chemistry and Physics, 2008, 112, 301-304.	4.0	31
26	Probing the Photochemical Mechanism in Photoactive Yellow Protein. Journal of Physical Chemistry B, 2005, 109, 18699-18705.	2.6	30
27	Pyrazoline-based colorimetric and fluorescent probe for detection of sulphite. New Journal of Chemistry, 2019, 43, 874-883.	2.8	29
28	Second-order optical effects in several pyrazolo-quinoline derivatives. Chemical Physics, 2004, 306, 265-271.	1.9	27
29	Blue electroluminescence in 1H-pyrazoloquinoline derivatives. Synthetic Metals, 2006, 156, 1348-1354.	3.9	26
30	New-synthesized pyrazoloquinoline as promising luminescent materials. Optics and Laser Technology, 2006, 38, 487-492.	4.6	26
31	Optical properties of new pyrazolo[3,4-b]quinoline and its composites. Synthetic Metals, 2002, 127, 175-180.	3.9	25
32	Some spirobiindane based 1H-pyrazolo [3,4-b] quinoline chromophore as novel chromophore for light-emitting diodes. Journal of Luminescence, 2010, 130, 2093-2099.	3.1	25
33	Spectral emission properties of 4-aryloxy-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]quinolines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 281-285.	3.9	24
34	Electron drift mobility in pyrazolo[3,4-b]quinoline doped polystyrene layers. Applied Physics Letters, 2000, 77, 322-324.	3.3	23
35	Investigations of the heavy atom effect occurring in bianthryl and 10,10â€ ² -dibromobianthryl. Fluorescence, cyclovoltamperometric and actinometric studiesDedicated to Professor Dr Z. R. Grabowski and Professor Dr J. Wirz on the occasions of their 75th and 60th birthdays Physical Chemistry Chemical Physics. 2003. 5. 988-997.	2.8	21
36	Fluorescent, molecularly imprinted thin-layer films based on a common polymer. Journal of Applied Polymer Science, 2007, 105, 229-235.	2.6	20

#	Article	IF	CITATIONS
37	Single-layered light-emitting diodes possessing methoxy-modified pyrazoloquinoline dyes in poly-N-vinylcarbazole matrix. Journal of Luminescence, 2008, 128, 348-354.	3.1	20
38	Combined XRD and DFT studies towards understanding the impact of intramolecular H-bonding on the reductive cyclization process in pyrazole derivatives. Journal of Molecular Structure, 2020, 1200, 127087.	3.6	20
39	New Fluorescent Sensors Based on 1H-pyrazolo[3,4-b]quinoline Skeleton. Journal of Fluorescence, 2010, 20, 525-532.	2.5	19
40	Photoluminescence spectra of bisphenol A based pyrazoloquinoline dimers in different solvents: Experiment and quantum chemical calculations. Materials Chemistry and Physics, 2010, 119, 140-144.	4.0	18
41	A new regiospecific synthesis method of 1 H -pyrazolo[3,4- b]quinoxalines – Potential materials for organic optoelectronic devices, and a revision of an old scheme. Tetrahedron, 2017, 73, 5072-5081.	1.9	18
42	Pyrazoloquinolines– alternative chromophores for organic LED fabrication. Macromolecular Symposia, 2004, 212, 473-478.	0.7	17
43	A New Fluorescent Sensor Based on 1H-pyrazolo[3,4-b]quinoline Skeleton. Part 2. Journal of Fluorescence, 2011, 21, 375-383.	2.5	17
44	Applications of Fluorescent Sensor Based on 1H-pyrazolo[3,4-b]quinoline in Analytical Chemistry. Journal of Fluorescence, 2013, 23, 1207-1215.	2.5	17
45	Electron transfer and intersystem crossing processes in new dyes based on 1H-pyrazolo[3,4-b]quinoxaline. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180, 88-100.	3.9	16
46	Charge transfer fluorescence of benzoxazol derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 191, 32-41.	3.9	16
47	Microwave-assisted, facile route to 1H-pyrazolo[3,4-b]quinolines. Arkivoc, 2000, 2000, 51-57.	0.5	16
48	Optical poling of oligoether acrylate photopolymers doped by 1-H-pyrazolo[3,4-b]quinolines derivative chromophores. Optics Communications, 2004, 231, 437-446.	2.1	15
49	Photophysical properties of some donor–acceptor 1H-pyrazolo[3,4-b]quinolines. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 78-86.	3.9	14
50	A Color Stable Blue Light-Emitting Device Using a Pyrazolo[3,4-b]Quinoline Derivative as an Emitter. IEEE Photonics Technology Letters, 2008, 20, 1781-1783.	2.5	14
51	Influence of chromophore dipole moments in parameterts of organic light emitting devices based on phenyl and methyl modified pyrazoloquinoline. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 1501-1505.	3.9	14
52	Influence of dipole moments on light-emitting features of cardo-type 1H-pyrazolo[3,4-b]quinolines. Journal of Luminescence, 2008, 128, 1831-1835.	3.1	13
53	Photoluminescence of 1-phenyl,3-methyl pyrazoloquinoline derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 72, 582-590.	3.9	13
54	Solution processable double layer organic light emitting diodes (OLEDs) based on 6- <i>N</i> , <i>N</i> -arylsubstituted-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]quinolines. International Journal of Higher Education Management, 2015, 1, 17-22.	1.3	13

ANDRZE	
ANDRZE	IJANFI
,	

#	ARTICLE is, UV–Vis spectroscopy and DFT/TDDFT calculations on 6-substituted halogen derivatives of	IF	CITATIONS
55	1,3-diphenyl- <mml:math si0047.gif<br="" xmins:mml="http://www.w3.org/1998/Math/Wath/Wath/WathWL_altimg=">overflow="scroll"><mml:mrow><mml:mn>1</mml:mn><mml:mspace <br="" width="0.25em">/><mml:mi>H</mml:mi></mml:mspace></mml:mrow></mml:math> -pyrazolo <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0048.gif"</mml:math 	3.1	13
56	Facile and Regioselective Synthesis of Substituted 1 H â€Pyrazolo[3,4―b]quinolines from 2â€Fluorobenzaldehydes and 1 H â€Pyrazolâ€5â€amines. Journal of Heterocyclic Chemistry, 2017, 54, 1729-	1745. ^{2.6}	13
57	Novel scintillating material 2-(4-styrylphenyl)benzoxazole for the fully digital and MRI compatible J-PET tomograph based on plastic scintillators. PLoS ONE, 2017, 12, e0186728.	2.5	13
58	Photophysical properties of 1-pyridine-3-phenylpyrazoloquinoline and molecular logic gate implementation. Dyes and Pigments, 2019, 166, 490-501.	3.7	13
59	Specific features of UV–vis absorption spectra of cis- and trans-polythiophenes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 64, 264-271.	3.9	12
60	Photoluminescence of methoxy and carboethoxy derivatives of 1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline: Experiment and quantum-chemical simulations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 137, 255-262.	3.5	12
61	Excited-State Double Proton Transfer in 1H-Pyrazolo[3,4-b]quinoline Dimers. Journal of Physical Chemistry A, 2009, 113, 5273-5279.	2.5	12
62	The photophysical properties of 1H-pyrazolo[3,4-b]quinoxalines derivatives and their possible optoelectronic application. Optical Materials, 2018, 80, 87-97.	3.6	12
63	Thin-Layer Film with an Incorporated Pyrazoloquinoline Derivative as a Fluorescent Sensor for Nucleotides. Adsorption Science and Technology, 2004, 22, 719-729.	3.2	11
64	Thin-layer photoluminescence and electroluminescence observed from pyrazoloquinoline-doped polymer matrices. Journal of Luminescence, 2007, 122-123, 605-609.	3.1	11
65	Spectroscopy of PVK-phenyl derivatives disturbed the long-range ordering of liquid crystalline phase. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 66, 781-785.	3.9	11
66	Influence of polymer matrices on spectral properties of pyrazoloquinoline derivatives. Materials Letters, 2007, 61, 2018-2022.	2.6	11
67	Thermoluminescence of the blue light-emitting system based on poly(9-vinylcarbazole) doped with a pyrazoloquinoline dye. Journal of Luminescence, 2009, 129, 1215-1218.	3.1	11
68	A Pilot Study of the Novel J-PET Plastic Scintillator with 2-(4-styrylphenyl)benzoxazole as a Wavelength Shifter. Acta Physica Polonica A, 2015, 127, 1487-1490.	0.5	11
69	Molecular engineering by light emitting diode parameters on the base of methoxy-pyrazoloquinoline dyes in polysilane matrices. Journal Physics D: Applied Physics, 2007, 40, 2748-2753.	2.8	10
70	Synthesis, photophysical and electroluminescent properties of 1,3-diphenyl-1H-benzo[g]pyrazolo[3,4–b]quinoxaline. Materials Letters, 2015, 138, 9-12.	2.6	10
71	Efficient green electroluminescence from 1,3-diphenyl-1 H -pyrazolo[3,4- b]quinoxaline dyes in dye-doped polymer based electroluminescent devices. Dyes and Pigments, 2018, 151, 380-384.	3.7	10
72	Photovoltaic response and values of state dipole moments in single-layered pyrazoloquinoline/polymer composites. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 70, 117-121.	3.9	9

#	Article	IF	CITATIONS
73	6-N,N-diarylsubstituted 1H-pyrazolo[3,4-b]quinoxalines-novel materials for single-layered photovoltaic devices. Journal of Materials Science: Materials in Electronics, 2009, 20, 461-468.	2.2	9
74	Exploring Reversible Quenching of Fluorescence from a Pyrazolo[3,4â€ <i>b</i>]quinoline Derivative by Protonation. ChemPhysChem, 2010, 11, 2623-2629.	2.1	9
75	On the spectral properties of methyl and methoxy derivatives of 1,3-diphenyl-1 H -pyrazolo[3,4- b]quinoxalines: Experiment and DFT/TDDFT calculations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 186, 89-98.	3.9	9
76	Fleeting Beauty—The World of Plant Fragrances and Their Application. Molecules, 2021, 26, 2473.	3.8	9
77	Intramolecular exciplexes based on benzoxazole: photophysics and applications as fluorescent cation sensors. Photochemical and Photobiological Sciences, 2008, 7, 633-641.	2.9	8
78	Nonlinear absorption of fullerene- and nanotubes-doped liquid crystal systems. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 391-394.	2.7	8
79	Investigation of the photoisomerisation process in four p-benzoxazoyl-substituted stilbenes. Photochemical and Photobiological Sciences, 2010, 9, 357-364.	2.9	8
80	Optically operated second order optical effects in some substituted 4-(5-nitro-1,3-benzoxazol-2-yl)aniline chromophores. Dyes and Pigments, 2017, 141, 333-341.	3.7	8
81	Synthesis and spectral properties of halogen methyl-phenyl-pyrazoloquinoxaline fluorescence dyes: Experiment and DFT/TDDFT calculations. Journal of Luminescence, 2018, 198, 370-377.	3.1	8
82	Drift Mobility of Electrons in Pyrazoline-Containing Copolymers. Russian Journal of Electrochemistry, 2004, 40, 359-363.	0.9	7
83	Tautomerism Phenomenon of Pyrazolo[3,4-b]quinoline:Â Spectroscopic and Quantum Mechanical Studies. Journal of Physical Chemistry A, 2007, 111, 5408-5414.	2.5	7
84	Single-layered photovoltaics based on cyano-substituted pyrazoloquinoline chromophores. Philosophical Magazine, 2009, 89, 807-819.	1.6	7
85	Photovoltaic Effect in Single Layer 1H-Pyrazolo[3,4-b]quinoline and 1H-Pyrazolo[3,4-b]quioxaline/Poly(3-Decylthiophene) Polymer Cells. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 632-638.	1.5	7
86	Star-burst 1H-pyrazolo[3,4-b]quinoline as chromophore for light-emitting diodes and photovoltaic devices. Philosophical Magazine, 2010, 90, 2677-2685.	1.6	7
87	Novel dipyrazolopyridine derivatives as deep blue emitters for polymer based organic light emitting diodes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 95, 610-613.	3.9	7
88	Photophysical properties of 6- N,N -dimethylpyrazolo[3,4- b]quinoline substituted with pyridyl in the 3-position. Optical Materials, 2017, 66, 527-533.	3.6	7
89	Synthesis and spectral properties of Methyl-Phenyl pyrazoloquinoxaline fluorescence emitters: Experiment and DFT/TDDFT calculations. Optical Materials, 2018, 75, 719-726.	3.6	7
90	Trifluoromethyl Substituted Derivatives of Pyrazoles as Materials for Photovoltaic and Electroluminescent Applications. Crystals, 2022, 12, 434.	2.2	7

#	Article	IF	CITATIONS
91	Specific solute–solvent interactions and dual fluorescence of electron donor substituted bis-pyrazoquinoline in binary mixed solvents. Chemical Physics, 2004, 307, 45-52.	1.9	6
92	Influence of bond lengths between substituents and mother molecule on spectral properties of pyrazoloquinolines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 65, 833-840.	3.9	6
93	1H-Pyrazolo[3,4-b]quinolines: Synthesis and Properties over 100 Years of Research. Molecules, 2022, 27, 2775.	3.8	6
94	Geometry computations of xH-pyrazolo[3,4-b]quinolines (x=1,2,9) in the ground state in tautomerism phenomenon. Computational and Theoretical Chemistry, 2004, 682, 179-183.	1.5	5
95	Optical absorption of bisphenol A based pyrazoloquinoline dimers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 685-690.	3.9	5
96	QUANTUM CHEMICAL Clâ€1 ANALYSIS OF UV ABSORPTION SPECTRA OF 1 <i>H</i> â€₽YRAZOLO[3,4â€b]QUINO SYSTEM. Bulletin Des Sociétés Chimiques Belges, 1994, 103, 725-741.	LINE	5
97	Towards Color Stable Blue Primary for Displays: Suppress Field-Dependent Color Change in a Multilayered Electroluminescent Device. Journal of Display Technology, 2011, 7, 96-104.	1.2	5
98	Spectral properties of 1H-pyrazolo[3,4-b]quinoline substituted with N,N-diethylamine moiety. Optical Materials, 2016, 57, 102-106.	3.6	5
99	Ellipsometric studies for thin polymer layers of organic photovoltaic cells. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 062402.	1.2	5
100	Synthesis, ellipsometry and non-linear optical features of substituted 1,3,5-triphenylpyrazolines. Dyes and Pigments, 2019, 162, 741-745.	3.7	5
101	Palladium-catalyzed amino group arylation of 1,3-disubstituted 1H-pyrazol-5-amine based on Buchwald–Hartwig reaction. Chemistry of Heterocyclic Compounds, 2021, 57, 633-639.	1.2	5
102	1H-Pyrazolo[3,4-b]quinoline derivative with the chelating substituent: Synthesis and spectral properties as a fluorescent sensor for cation detection. Dyes and Pigments, 2021, 195, 109713.	3.7	5
103	Influence of solvent polarity and temperature on dual fluorescence of 10,10′-dibromo, 9,9′-bianthryl. Journal of Luminescence, 2006, 121, 39-50.	3.1	4
104	Electroluminescent properties of 6-N,N-diarylsubstituted-1H-pyrazolo[3,4-b]quinolines as light emitting diode chromophore. Journal of Materials Science: Materials in Electronics, 2013, 24, 613-617.	2.2	4
105	Photophysical properties of TICT molecule adsorbed on semiconductor titania–silica colloids. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 177, 83-88.	3.9	3
106	Acid–base properties of 3,5-dimethyl-1,7-diphenyl derivative of bis-pyrazolopyridine in non-aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180, 80-87.	3.9	3
107	Synthesis and Electro-Optic Properties of Pirazolo[3,4-b]Chinoline – PVK Copolymers. Molecular Crystals and Liquid Crystals, 2006, 447, 181/[499]-188/[506].	0.9	3
108	Bisphenol A based pyrazoloquinoline dimers as dopants for electroluminescent applications. Journal of Materials Science: Materials in Electronics, 2011, 22, 101-105.	2.2	3

#	Article	IF	CITATIONS
109	Spectral Properties of Highly Emissive Derivative of Coumarin with N,N-Diethylamino, Nitrile and Tiophenecarbonyl Moieties in Water-Methanol Mixture. Journal of Fluorescence, 2019, 29, 1393-1399.	2.5	3
110	Synthesis of 1 H â€Pyrazolo[3,4―b]quinoxaline Derivatives by Modification of the Regiospecific Reaction – the Influence of the Microwave Field. ChemistrySelect, 2021, 6, 4330-4335.	1.5	3
111	Spectral Features and Parameters of Some 1H-Pyrazolo[3,4-b]quinoxaline Derivative Dye Chromophores. Spectroscopy Letters, 2009, 42, 136-141.	1.0	2
112	Stationary and time-resolved spectra analysis of pyrazoloquinoline derivatives with pyridyl moiety. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 492-498.	3.9	2
113	Laser-induced linear and non-linear optical features in novel benzoxazole-based on donor-acceptor chromophores. Journal of Molecular Structure, 2018, 1173, 531-540.	3.6	2
114	The Synthesis of 1 H â€Pyrazolo[3,4―b]quinoxaline Derivatives Oriented towards Modification of Carbocyclic Ring in the Parent Skeleton. ChemistrySelect, 2020, 5, 5521-5525.	1.5	2
115	UV-operated pyrazoloquinoline piezooptical materials. Optical Materials, 2008, 30, 939-945.	3.6	1
116	Influence of dispersed core-shell nano-sized particles on P3OT based photovoltaic device. , 2009, , .		1
117	3-Methyl-1,4-diphenyl-1H-pyrazolo[3,4-b]quinoline. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3009-o3009.	0.2	1
118	Plants as a treasury of fragrant substances for food industry and perfumery. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 0, , 149-160.	0.0	1
119	Reply to Comment on â€~Optical poling of oligoether acrylate photopolymers doped by stilbene-benzoate derivative chromophores'. Journal of Physics Condensed Matter, 2005, 17, 1765-1766.	1.8	0
120	Properties of a copolymer based on N-vinylcarbazole and 1,3,4-triphenyl-6-vinyl-1H-pyrazol[3,4-B]quinoline applied in electroluminescent devices. , 2009, , .		0
121	Photovoltaic effect based on pyrazole derivatives. , 2009, , .		0
122	Single-layer electroluminescent devices based on fluorene-1H-pyrazolo[3,4-b]quinoxaline co-polymers. , 2013, , .		0
123	Photovoltaic cells based on organic composites. , 2016, , .		0
124	Optical poling of oligoether acrylate photopolymers doped by stilbene-benzoate derivative chromophores. Journal of Physics Condensed Matter, 2005, 17, 1767-1767.	1.8	0
125	Chemical Doping of a Silica Matrix with a New Organic Dye from the Group of Heterocyclic Compounds—Chemical, Optical and Surface Characteristics. Crystals, 2022, 12, 478.	2.2	0