Jian-Shi Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2293696/publications.pdf Version: 2024-02-01

ΙιλΝ-SHI ΖΗΛΟ

#	Article	IF	CITATIONS
1	Inverse scattering transform of the general three-component nonlinear SchrĶdinger equation and its multisoliton solutions. Applied Mathematics Letters, 2022, 128, 107874.	2.7	7
2	Soft-cooperation via data sharing eases transboundary conflicts in the Lancang-Mekong River Basin. Journal of Hydrology, 2022, 606, 127464.	5.4	8
3	Modeling Effects of Atmospheric Nitrogen Deposition on the Water Quality of the MR-SNWDP. Atmosphere, 2022, 13, 553.	2.3	2
4	Partition of one-dimensional river flood routing uncertainty due to boundary conditions and riverbed roughness. Journal of Hydrology, 2022, 608, 127660.	5.4	6
5	Prediction of NDVI dynamics under different ecological water supplementation scenarios based on a long short-term memory network in the Zhalong Wetland, China. Journal of Hydrology, 2022, 608, 127626.	5.4	9
6	Optimal Operation Rules for Parallel Reservoir Systems with Distributed Water Demands. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	2.6	2
7	Location identification of river bathymetric error based on the forward and reverse flow routing. Water Science and Technology: Water Supply, 2022, 22, 5095-5110.	2.1	3
8	Release process identification of non-instantaneous point source pollution in rivers via reverse flow and pollution routing. Environmental Research, 2022, 213, 113704.	7.5	1
9	Changes in reference evapotranspiration over the nonâ€monsoon region of China during 1961–2017: Relationships with atmospheric circulation and attributions. International Journal of Climatology, 2021, 41, E734.	3.5	7
10	Scenario analysis for the sustainable development of agricultural water in the Wuyuer River basin based on the WEP model with a reservoir and diversion engineering module. Science of the Total Environment, 2021, 758, 143668.	8.0	10
11	A Forecast-Skill-Based Dynamic Pre-Storm Level Control for Reservoir Flood-Control Operation. Water (Switzerland), 2021, 13, 556.	2.7	4
12	Dam-Impacted Water–Energy–Food Nexus in Lancang-Mekong River Basin. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	2.6	20
13	Improving real-time reservoir operation during flood season by making the most of streamflow forecasts. Journal of Hydrology, 2021, 595, 126017.	5.4	8
14	Analyzing the Impact of Streamflow Drought on Hydroelectricity Production: A Global cale Study. Water Resources Research, 2021, 57, e2020WR028087.	4.2	28
15	Regional Patterns and Physical Controls of Streamflow Generation Across the Conterminous United States. Water Resources Research, 2021, 57, e2020WR028086.	4.2	20
16	Use of sustainability index and cellular automata-Markov model to determine and predict long-term spatio-temporal variation of drought in China. Journal of Hydrology, 2021, 598, 126248.	5.4	15
17	Understanding water rights and water trading systems in China: A systematic framework. Water Security, 2021, 13, 100094.	2.5	9
18	Additional surface-water deficit to meet global universal water accessibility by 2030. Journal of Cleaner Production, 2021, 320, 128829.	9.3	11

JIAN-SHI ZHAO

#	Article	IF	CITATIONS
19	South-to-North Water Diversion stabilizing Beijing's groundwater levels. Nature Communications, 2020, 11, 3665.	12.8	254
20	Influence of River Discharge on the Transport of the Saltwater Group from the North Branch in the Yangtze River Estuary. International Journal of Environmental Research and Public Health, 2020, 17, 9156.	2.6	4
21	Hydraulic Potential Energy Model for Hydropower Operation in Mixed Reservoir Systems. Water Resources Research, 2020, 56, e2019WR026062.	4.2	9
22	Deceleration of China's human water use and its key drivers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7702-7711.	7.1	155
23	An effective method for point pollution source identification in rivers with performance-improved ensemble Kalman filter. Journal of Hydrology, 2019, 577, 123991.	5.4	23
24	Water benefits sharing under transboundary cooperation in the Lancang-Mekong River Basin. Journal of Hydrology, 2019, 577, 123989.	5.4	43
25	Evolutionary Cooperation in Transboundary River Basins. Water Resources Research, 2019, 55, 9977-9994.	4.2	23
26	Revisiting Water Supply Rule Curves with Hedging Theory for Climate Change Adaptation. Sustainability, 2019, 11, 1827.	3.2	8
27	Constrained Model Predictive Control Algorithm for Cascaded Irrigation Canals. Journal of Irrigation and Drainage Engineering - ASCE, 2019, 145, .	1.0	24
28	Comparing the Economic and Environmental Effects of Different Water Management Schemes Using a Coupled Agent–Hydrologic Model. Journal of Water Resources Planning and Management - ASCE, 2019, 145, .	2.6	9
29	Effects of Hydrologic Conditions and Reservoir Operation on Transboundary Cooperation in the Lancang–Mekong River Basin. Journal of Water Resources Planning and Management - ASCE, 2019, 145, .	2.6	30
30	A Twoâ€Phase Model for Trade Matching and Price Setting in Double Auction Water Markets. Water Resources Research, 2018, 54, 2999-3017.	4.2	11
31	Piecewise-Linear Hedging Rules for Reservoir Operation with Economic and Ecologic Objectives. Water (Switzerland), 2018, 10, 865.	2.7	12
32	A Budyko-type model for human water consumption. Journal of Hydrology, 2018, 567, 212-226.	5.4	23
33	A Holistic View of Water Management Impacts on Future Droughts: A Global Multimodel Analysis. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5947-5972.	3.3	25
34	Optimizing environmental flow operations based on explicit quantification of IHA parameters. Journal of Hydrology, 2018, 563, 510-522.	5.4	31
35	New approach for point pollution source identification in rivers based on the backward probability method. Environmental Pollution, 2018, 241, 759-774.	7.5	56
36	Improved Dynamic Programming for Reservoir Flood Control Operation. Water Resources Management, 2017, 31, 2047-2063.	3.9	28

Jian-Shi Zhao

#	Article	IF	CITATIONS
37	Observed changes in flow regimes in the Mekong River basin. Journal of Hydrology, 2017, 551, 217-232.	5.4	135
38	Dam Construction in Lancangâ€Mekong River Basin Could Mitigate Future Flood Risk From Warmingâ€Induced Intensified Rainfall. Geophysical Research Letters, 2017, 44, 10,378.	4.0	79
39	Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale. Water Resources Research, 2017, 53, 8277-8292.	4.2	34
40	Hydrological Drought in the Anthropocene: Impacts of Local Water Extraction and Reservoir Regulation in the U.S Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,313.	3.3	58
41	Unifying catchment water balance models for different time scales through the maximum entropy production principle. Water Resources Research, 2016, 52, 7503-7512.	4.2	28
42	Optimal Pre-storm Flood Hedging Releases for a Single Reservoir. Water Resources Management, 2016, 30, 5113-5129.	3.9	31
43	Optimal Hedging Rule for Reservoir Refill. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	2.6	28
44	Optimal Hedging Rules for Two-Objective Reservoir Operation: Balancing Water Supply and Environmental Flow. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	2.6	19
45	Source of atmospheric moisture and precipitation over China's major river basins. Frontiers of Earth Science, 2016, 10, 159-170.	2.1	23
46	Evaluating the marginal utility principle for long-term hydropower scheduling. Energy Conversion and Management, 2015, 106, 213-223.	9.2	52
47	Adaptive Reservoir Operation Model Incorporating Nonstationary Inflow Prediction. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	2.6	37
48	Quantifying predictive uncertainty of streamflow forecasts based on a Bayesian joint probability model. Journal of Hydrology, 2015, 528, 329-340.	5.4	49
49	A thermodynamic interpretation of Budyko and L'vovich formulations of annual water balance: Proportionality Hypothesis and maximum entropy production. Water Resources Research, 2015, 51, 3007-3016.	4.2	39
50	ldentifying determinants of urban water use using data mining approach. Urban Water Journal, 2015, 12, 618-630.	2.1	9
51	Improved Dynamic Programming for Hydropower Reservoir Operation. Journal of Water Resources Planning and Management - ASCE, 2014, 140, 365-374.	2.6	110
52	Improved multiple-objective dynamic programming model for reservoir operation optimization. Journal of Hydroinformatics, 2014, 16, 1142-1157.	2.4	25
53	Optimizing Operation of Water Supply Reservoir: The Role of Constraints. Mathematical Problems in Engineering, 2014, 2014, 1-15.	1.1	9
54	Joint and respective effects of long- and short-term forecast uncertainties on reservoir operations. Journal of Hydrology, 2014, 517, 83-94.	5.4	64

JIAN-SHI ZHAO

#	Article	IF	CITATIONS
55	Optimal Hedging Rules for Reservoir Flood Operation from Forecast Uncertainties. Journal of Water Resources Planning and Management - ASCE, 2014, 140, .	2.6	64
56	Forecast-skill-based simulation of streamflow forecasts. Advances in Water Resources, 2014, 71, 55-64.	3.8	16
57	Comparing administered and market-based water allocation systems through a consistent agent-based modeling framework. Journal of Environmental Management, 2013, 123, 120-130.	7.8	54
58	Generalized martingale model of the uncertainty evolution of streamflow forecasts. Advances in Water Resources, 2013, 57, 41-51.	3.8	56
59	Identifying effective forecast horizon for realâ€ŧime reservoir operation under a limited inflow forecast. Water Resources Research, 2012, 48, .	4.2	87
60	Decentralized Optimization Method for Water Allocation Management in the Yellow River Basin. Journal of Water Resources Planning and Management - ASCE, 2012, 138, 313-325.	2.6	58
61	Agricultural water productivity assessment for the Yellow River Basin. Agricultural Water Management, 2011, 98, 1297-1306.	5.6	25
62	Optimality conditions for a twoâ€stage reservoir operation problem. Water Resources Research, 2011, 47, .	4.2	63
63	A Multi-Agent System Based Model for Water Allocation Management in the Yellow River Basin. , 2010, ,		2
64	Yellow River basin: living with scarcity. Water International, 2010, 35, 681-701.	1.0	68
65	General Platform for Water Resources Optimal Operation: Lp_SolveJ. , 2009, , .		0
66	An Agent Based Nonlinear Optimal Model of Water Resources System and Its Solving Method. , 2009, , .		0
67	Coupled surface water–groundwater model and its application in the arid Shiyang River basin, China. Hydrological Processes, 2009, 23, 2033-2044.	2.6	19
68	Evaluation of Economic and Hydrologic Impacts of Unified Water Flow Regulation in the Yellow River Basin. Water Resources Management, 2009, 23, 1387-1401.	3.9	19
69	Water Marginal Benefit Analysis in the Recipient Area of Water Transfer Project from South to North. , 2006, , 1.		0
70	Study on the holistic model for water resources system. Science in China Series D: Earth Sciences, 2004, 47, 72.	0.9	9