Carolee Joyce Winstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2293502/publications.pdf Version: 2024-02-01

		36303	25787
192	13,143	51	108
papers	citations	h-index	g-index
217	217	217	9832
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The <scp>ENIGMA</scp> Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke. Human Brain Mapping, 2022, 43, 129-148.	3.6	54
2	mHealth technologies used to capture walking and arm use behavior in adult stroke survivors: a scoping review beyond measurement properties. Disability and Rehabilitation, 2022, 44, 6094-6106.	1.8	11
3	Effort, success, and side of lesion determine arm choice in individuals with chronic stroke. Journal of Neurophysiology, 2022, 127, 255-266.	1.8	10
4	Virtuous and Vicious Cycles of Arm Use and Function Post-stroke. Frontiers in Neurology, 2022, 13, 804211.	2.4	11
5	Corticospinal Tract Lesion Load Originating From Both Ventral Premotor and Primary Motor Cortices Are Associated With Post-stroke Motor Severity. Neurorehabilitation and Neural Repair, 2022, 36, 179-182.	2.9	10
6	Genetic Factors, Brain Atrophy, and Response to Rehabilitation Therapy After Stroke. Neurorehabilitation and Neural Repair, 2022, 36, 131-139.	2.9	8
7	Ipsilesional arm training in severe stroke to improve functional independence (IPSI): phase II protocol. BMC Neurology, 2022, 22, 141.	1.8	0
8	Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis. Journal of the American Heart Association, 2022, 11, e025109.	3.7	8
9	Retrospective Analysis of Task-Specific Effects on Brain Activity After Stroke: A Pilot Study. Frontiers in Human Neuroscience, 2022, 16, .	2.0	3
10	A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms. Scientific Data, 2022, 9, .	5.3	33
11	A perspective on the use of ecological momentary assessment and intervention to promote stroke recovery and rehabilitation. Topics in Stroke Rehabilitation, 2021, 28, 594-605.	1.9	14
12	Inaccurate Use of the Upper Extremity Fugl-Meyer Negatively Affects Upper Extremity Rehabilitation Trial Design: Findings From the ICARE Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 2021, 102, 270-279.	0.9	2
13	Five Features to Look for in Early-Phase Clinical Intervention Studies. Neurorehabilitation and Neural Repair, 2021, 35, 3-9.	2.9	12
14	The Utility of Domain-Specific End Points in Acute Stroke Trials. Stroke, 2021, 52, 1154-1161.	2.0	13
15	Remedial Training of the Less-Impaired Arm in Chronic Stroke Survivors With Moderate to Severe Upper-Extremity Paresis Improves Functional Independence: A Pilot Study. Frontiers in Human Neuroscience, 2021, 15, 645714.	2.0	9
16	A Novel Combination of Accelerometry and Ecological Momentary Assessment for Post-Stroke Paretic Arm/Hand Use: Feasibility and Validity. Journal of Clinical Medicine, 2021, 10, 1328.	2.4	8
17	Lost in Translation: Simple Steps in Experimental Design of Neurorehabilitation-Based Research Interventions to Promote Motor Recovery Post-Stroke. Frontiers in Human Neuroscience, 2021, 15, 644335.	2.0	4
18	Young adults with recurrent low back pain demonstrate altered trunk coordination during gait independent of pain status and attentional demands. Experimental Brain Research, 2021, 239, 1937-1949.	1.5	8

#	Article	IF	CITATIONS
19	Corticospinal Tract Microstructure Predicts Distal Arm Motor Improvements in Chronic Stroke. Journal of Neurologic Physical Therapy, 2021, 45, 273-281.	1.4	8
20	Beta-Testing of an Online Mindfulness Program Designed for Stroke Survivors and Their Caregivers During a Pandemic. Archives of Physical Medicine and Rehabilitation, 2021, 102, e37.	0.9	0
21	Measurement Properties of mHealth Technologies to Capture Functional Movement Behaviors in Stroke Survivors: a Scoping Review. Archives of Physical Medicine and Rehabilitation, 2021, 102, e115.	0.9	1
22	Unique behavioral strategies in visuomotor learning: Hope for the non-learner. Human Movement Science, 2021, 79, 102858.	1.4	2
23	Insights Gained From Activity Monitors for Upper Limb Stroke Rehabilitation. Archives of Physical Medicine and Rehabilitation, 2021, 102, e21.	0.9	2
24	Smaller spared subcortical nuclei are associated with worse post-stroke sensorimotor outcomes in 28 cohorts worldwide. Brain Communications, 2021, 3, fcab254.	3.3	7
25	Functional Deficits in the Less-Impaired Arm of Stroke Survivors Depend on Hemisphere of Damage and Extent of Paretic Arm Impairment. Neurorehabilitation and Neural Repair, 2020, 34, 39-50.	2.9	35
26	An investigation into the validity and reliability of mHealth devices for counting steps in chronic stroke survivors. Clinical Rehabilitation, 2020, 34, 394-403.	2.2	17
27	A Reaching Performance Scale for 2 Wolf Motor Function Test Items. Archives of Physical Medicine and Rehabilitation, 2020, 101, 2015-2026.	0.9	4
28	The probability of choosing both hands depends on an interaction between motor capacity and limb-specific control in chronic stroke. Experimental Brain Research, 2020, 238, 2569-2579.	1.5	10
29	The Efficiency, Efficacy, and Retention of Task Practice in Chronic Stroke. Neurorehabilitation and Neural Repair, 2020, 34, 881-890.	2.9	17
30	Motor Deficits in the Ipsilesional Arm of Severely Paretic Stroke Survivors Correlate With Functional Independence in Left, but Not Right Hemisphere Damage. Frontiers in Human Neuroscience, 2020, 14, 599220.	2.0	6
31	Active Video Games and Low-Cost Virtual Reality: An Ideal Therapeutic Modality for Children With Physical Disabilities During a Global Pandemic. Frontiers in Neurology, 2020, 11, 601898.	2.4	23
32	Estimating minimal clinically important differences for two scales in patients with chronic traumatic brain injury. Current Medical Research and Opinion, 2020, 36, 1999-2007.	1.9	7
33	Predictors of Arm Nonuse in Chronic Stroke: A Preliminary Investigation. Neurorehabilitation and Neural Repair, 2020, 34, 512-522.	2.9	25
34	Expectancy and affective response to challenging balance practice conditions in individuals with Parkinson's disease. European Journal of Neuroscience, 2020, 52, 3652-3662.	2.6	1
35	Persons in remission from recurrent low back pain alter trunk coupling under dual-task interference during a dynamic balance task. Experimental Brain Research, 2020, 238, 957-968.	1.5	6
36	Translation and validation of the stroke self-efficacy questionnaire to a Portuguese version in stroke survivors. Topics in Stroke Rehabilitation, 2020, 27, 462-472.	1.9	12

#	Article	IF	CITATIONS
37	Standardized Measurement of Quality of Upper Limb Movement After Stroke: Consensus-Based Core Recommendations From the Second Stroke Recovery and Rehabilitation Roundtable. Neurorehabilitation and Neural Repair, 2019, 33, 951-958.	2.9	84
38	Standardized measurement of quality of upper limb movement after stroke: Consensus-based core recommendations from the Second Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2019, 14, 783-791.	5.9	84
39	Development of a training paradigm for voluntary control of the peri-auricular muscles: a feasibility study. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 75.	4.6	0
40	Dosage Matters. Stroke, 2019, 50, 1831-1837.	2.0	52
41	Reduced Upper Limb Recovery in Subcortical Stroke Patients With Small Prior Radiographic Stroke. Frontiers in Neurology, 2019, 10, 454.	2.4	8
42	Self-efficacy and Reach Performance in Individuals With Mild Motor Impairment Due to Stroke. Neurorehabilitation and Neural Repair, 2019, 33, 319-328.	2.9	19
43	Relationship Between Motor Capacity of the Contralesional and Ipsilesional Hand Depends on the Side of Stroke in Chronic Stroke Survivors With Mild-to-Moderate Impairment. Frontiers in Neurology, 2019, 10, 1340.	2.4	17
44	A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Scientific Data, 2018, 5, 180011.	5.3	170
45	Thoughts About the Negative Results of Clinical Trials in Rehabilitation Medicine. Kinesiology Review, 2018, 7, 58-63.	0.6	9
46	The ATTEND trial: An alternative explanation with implications for future recovery and rehabilitation clinical trials. International Journal of Stroke, 2018, 13, 112-116.	5.9	13
47	A comparison of seven different DTI-derived estimates of corticospinal tract structural characteristics in chronic stroke survivors. Journal of Neuroscience Methods, 2018, 304, 66-75.	2.5	18
48	Accelerating Stroke Recovery: Body Structures and Functions, Activities, Participation, and Quality of Life Outcomes From a Large Rehabilitation Trial. Neurorehabilitation and Neural Repair, 2018, 32, 150-165.	2.9	61
49	Investigation of Perceptual-Motor Behavior Across the Expert Athlete to Disabled Patient Skill Continuum can Advance Theory and Practical Application. Journal of Motor Behavior, 2018, 50, 697-707.	0.9	6
50	Measuring Habitual Arm Use Post-stroke With a Bilateral Time-Constrained Reaching Task. Frontiers in Neurology, 2018, 9, 883.	2.4	10
51	Medical Rehabilitation: Guidelines to Advance the Field With High-Impact Clinical Trials. Archives of Physical Medicine and Rehabilitation, 2018, 99, 2637-2648.	0.9	15
52	Changing one's focus of attention alters the structure of movement variability. Human Movement Science, 2018, 62, 14-24.	1.4	12
53	Been there, done that, so what's next for arm and hand rehabilitation in stroke?. NeuroRehabilitation, 2018, 43, 3-18.	1.3	40
54	Laterality of Poststroke Cortical Motor Activity during Action Observation Is Related to Hemispheric Dominance. Neural Plasticity, 2018, 2018, 1-14.	2.2	13

#	Article	IF	CITATIONS
55	Abstract TMP48: Subcortical Volumes Associated With Post-Stroke Motor Performance Vary Across Impairment Severity, Time Since Stroke, and Lesion Laterality: an ENIGMA Stroke Recovery Analysis. Stroke, 2018, 49, .	2.0	1
56	Abstract WP152: Exploration of the Factors That Influence Spontaneous Bimanual Arm Use After Stroke: Implications for Clinical Rehabilitation. Stroke, 2018, 49, .	2.0	0
57	Abstract 23: BDNF val 66 met Genotype is Associated With Greater Brain Atrophy After Stroke. Stroke, 2018, 49, .	2.0	0
58	Stroke Lesions in a Large Upper Limb Rehabilitation Trial Cohort Rarely Match Lesions in Common Preclinical Models. Neurorehabilitation and Neural Repair, 2017, 31, 509-520.	2.9	21
59	Functional Test of the Hemiparetic Upper Extremity: AÂRasch Analysis With Theoretical Implications. Archives of Physical Medicine and Rehabilitation, 2017, 98, 1977-1983.	0.9	3
60	Skilled Reach Performance Correlates With Corpus Callosum Structural Integrity in Individuals With Mild Motor Impairment After Stroke: A Preliminary Investigation. Neurorehabilitation and Neural Repair, 2017, 31, 657-665.	2.9	9
61	Standardized Measurement of Sensorimotor Recovery in Stroke Trials: Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable. Neurorehabilitation and Neural Repair, 2017, 31, 784-792.	2.9	135
62	The Past, Present, and Future of Neurorehabilitation: From NUSTEP Through IV STEP and Beyond. Pediatric Physical Therapy, 2017, 29, S2-S9.	0.6	1
63	The Past, Present, and Future of Neurorehabilitation: From NUSTEP Through IV STEP and Beyond. Journal of Neurologic Physical Therapy, 2017, 41, S3-S9.	1.4	5
64	Standardized measurement of sensorimotor recovery in stroke trials: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2017, 12, 451-461.	5.9	352
65	Can Neurological Biomarkers of Brain Impairment Be Used to Predict Poststroke Motor Recovery? A Systematic Review. Neurorehabilitation and Neural Repair, 2017, 31, 3-24.	2.9	145
66	How a diverse research ecosystem has generated new rehabilitation technologies: Review of NIDILRR's Rehabilitation Engineering Research Centers. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 109.	4.6	17
67	Abstract 14: Effects of Lesion Laterality on Post-Stroke Motor Performance: An ENIGMA Stroke Recovery Analysis. Stroke, 2017, 48, .	2.0	4
68	Does the Side of Stroke Matter? An fMRI Study on the Role of Stroke Laterality on the Action Observation Network. American Journal of Occupational Therapy, 2017, 71, 7111505148p1-7111505148p1.	0.3	0
69	Task-Oriented Rehabilitation Program for Stroke—Reply. JAMA - Journal of the American Medical Association, 2016, 316, 102.	7.4	0
70	Robot-assisted and conventional therapies produce distinct rehabilitative trends in stroke survivors. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 92.	4.6	14
71	Motor Lateralization Provides a Foundation for Predicting and Treating Non-paretic Arm Motor Deficits in Stroke. Advances in Experimental Medicine and Biology, 2016, 957, 257-272.	1.6	25
72	Guidelines for Adult Stroke Rehabilitation and Recovery. Stroke, 2016, 47, e98-e169.	2.0	1,847

#	Article	IF	CITATIONS
73	Role of the dorsolateral prefrontal cortex in contextâ€dependent motor performance. European Journal of Neuroscience, 2016, 43, 954-960.	2.6	3
74	Effect of a Task-Oriented Rehabilitation Program on Upper Extremity Recovery Following Motor Stroke. JAMA - Journal of the American Medical Association, 2016, 315, 571.	7.4	263
75	Development of a novel imaging informatics-based system with an intelligent workflow engine (IWEIS) to support imaging-based clinical trials. Computers in Biology and Medicine, 2016, 69, 261-269.	7.0	9
76	Context-Dependent Learning in People With Parkinson's Disease. Journal of Motor Behavior, 2016, 48, 240-248.	0.9	13
77	Short-Duration and Intensive Training Improves Long-Term Reaching Performance in Individuals With Chronic Stroke. Neurorehabilitation and Neural Repair, 2016, 30, 551-561.	2.9	30
78	Epidural Electrical Stimulation for Stroke Rehabilitation. Neurorehabilitation and Neural Repair, 2016, 30, 107-119.	2.9	131
79	Validation of Automated Mobility Assessment Using a Single 3D Sensor. Lecture Notes in Computer Science, 2016, , 162-177.	1.3	2
80	Attentional Demand of a Virtual Reality-Based Reaching Task in Nondisabled Older Adults. Journal of Motor Learning and Development, 2015, 3, 91-109.	0.4	5
81	A Comparison of Older Adults' Subjective Experiences With Virtual and Real Environments During Dynamic Balance Activities. Journal of Aging and Physical Activity, 2015, 23, 24-33.	1.0	17
82	Outcome measures for hand function naturally reveal three latent domains in older adults: strength, coordinated upper extremity function, and sensorimotor processing. Frontiers in Aging Neuroscience, 2015, 7, 108.	3.4	24
83	Functional MRI Preprocessing in Lesioned Brains: Manual Versus Automated Region of Interest Analysis. Frontiers in Neurology, 2015, 6, 196.	2.4	8
84	Interrater Reliability of the Wolf Motor Function Test–Functional Ability Scale. Neurorehabilitation and Neural Repair, 2015, 29, 436-443.	2.9	16
85	Characterizing stroke lesions using digital templates and lesion quantification tools in a web-based imaging informatics system for a large-scale stroke rehabilitation clinical trial. Proceedings of SPIE, 2015, , .	0.8	0
86	Innovative Technologies for Rehabilitation and Health Promotion: What Is the Evidence?. Physical Therapy, 2015, 95, 294-298.	2.4	14
87	Translating the science into practice. Progress in Brain Research, 2015, 218, 331-360.	1.4	60
88	Does Action Observation Training With Immediate Physical Practice Improve Hemiparetic Upper-Limb Function in Chronic Stroke?. Neurorehabilitation and Neural Repair, 2015, 29, 807-817.	2.9	43
89	Control of reach extent with the paretic and nonparetic arms after unilateral sensorimotor stroke II: planning and adjustments to control movement distance. Experimental Brain Research, 2014, 232, 3431-3443.	1.5	21
90	Spectral Analyses of Wrist Motion in Individuals Poststroke. Neurorehabilitation and Neural Repair, 2014, 28, 169-178.	2.9	15

#	Article	IF	CITATIONS
91	Infusing Motor Learning Research Into Neurorehabilitation Practice. Journal of Neurologic Physical Therapy, 2014, 38, 190-200.	1.4	140
92	Control of reach extent with the paretic and nonparetic arms after unilateral sensorimotor stroke: kinematic differences based on side of brain damage. Experimental Brain Research, 2014, 232, 2407-2419.	1.5	26
93	Evaluation of Attentional Demands During Motor Learning: Validity of a Dual-Task Probe Paradigm. Journal of Motor Behavior, 2014, 46, 95-105.	0.9	17
94	Planning and adjustments for the control of reach extent in a virtual environment. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 27.	4.6	24
95	Discriminant validity of a new measure of self-efficacy for reaching movements after stroke-induced hemiparesis. Journal of Hand Therapy, 2013, 26, 116-123.	1.5	22
96	Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE): a randomized controlled trial protocol. BMC Neurology, 2013, 13, 5.	1.8	57
97	Home Monitoring Musculo-skeletal Disorders with a Single 3D Sensor. , 2013, , .		21
98	Temporal Coupling Is More Robust Than Spatial Coupling: An Investigation of Interlimb Coordination After Stroke. Journal of Motor Behavior, 2013, 45, 313-324.	0.9	25
99	Feasibility Investigation of the Accelerated Skill Acquisition Program (ASAP): Insights into Reach-to-Grasp Coordination of Individuals with Postacute Stroke. Topics in Stroke Rehabilitation, 2013, 20, 151-160.	1.9	20
100	Modulating the Motor System by Action Observation After Stroke. Stroke, 2013, 44, 2247-2253.	2.0	67
101	Monitoring mobility disorders at home using 3D visual sensors and mobile sensors. , 2013, , .		6
102	Quantifying Arm Nonuse in Individuals Poststroke. Neurorehabilitation and Neural Repair, 2013, 27, 439-447.	2.9	59
103	Imaging informatics-based multimedia ePR system for data management and decision support in rehabilitation research. Proceedings of SPIE, 2013, , .	0.8	2
104	Progressionâ€Preserving Dimension Reduction for Highâ€Dimensional Sensor Data Visualization. ETRI Journal, 2013, 35, 911-914.	2.0	0
105	Use It and Improve It or Lose It: Interactions between Arm Function and Use in Humans Post-stroke. PLoS Computational Biology, 2012, 8, e1002343.	3.2	67
106	Task-Oriented Rehabilitation Robotics. American Journal of Physical Medicine and Rehabilitation, 2012, 91, S270-S279.	1.4	54
107	Minimal Detectable Change of the Actual Amount of Use Test and the Motor Activity Log. Neurorehabilitation and Neural Repair, 2012, 26, 507-514.	2.9	30
108	An imaging informatics-based ePR (electronic patient record) system for providing decision support in evaluating dose optimization in stroke rehabilitation. , 2012, , .		2

CAROLEE JOYCE WINSTEIN

#	Article	IF	CITATIONS
109	A multimedia comprehensive informatics system with decision support tools for a multi-site collaboration research of stroke rehabilitation. Proceedings of SPIE, 2012, , .	0.8	1
110	Anticipatory Planning of Functional Reach-to-Grasp. Neurorehabilitation and Neural Repair, 2012, 26, 957-967.	2.9	25
111	Learning–performance distinction and memory processes for motor skills: A focused review and perspective. Behavioural Brain Research, 2012, 228, 219-231.	2.2	311
112	Dual-task practice enhances motor learning: a preliminary investigation. Experimental Brain Research, 2012, 222, 201-210.	1.5	39
113	A Transformative Subfield in Rehabilitation Science at the Nexus of New Technologies, Aging, and Disability. Frontiers in Psychology, 2012, 3, 340.	2.1	12
114	Strengthening and Optimal Movements for Painful Shoulders (STOMPS) in Chronic Spinal Cord Injury: A Randomized Controlled Trial. Physical Therapy, 2011, 91, 305-324.	2.4	131
115	Transfer of Motor Learning Engages Specific Neural Substrates During Motor Memory Consolidation Dependent on the Practice Structure. Journal of Motor Behavior, 2011, 43, 499-507.	0.9	17
116	Invited Commentary. Physical Therapy, 2011, 91, 174-176.	2.4	2
117	Secondary Mediation and Regression Analyses of the PTClinResNet Database: Determining Causal Relationships Among the International Classification of Functioning, Disability and Health Levels for Four Physical Therapy Intervention Trials. Physical Therapy, 2011, 91, 1766-1779.	2.4	18
118	Virtual Reality and Robotics for Stroke Rehabilitation: Where Do We Go from Here?. Topics in Stroke Rehabilitation, 2011, 18, 685-700.	1.9	53
119	Mechanisms of the contextual interference effect in individuals poststroke. Journal of Neurophysiology, 2011, 106, 2632-2641.	1.8	54
120	Emotions and Telerebabilitation: Pilot Clinical Trials for Virtual Telerebabilitation Application Using Haptic Device and Its Impact on Post Stroke Patients' Mood and Motivation. Lecture Notes in Computer Science, 2011, , 119-128.	1.3	0
121	Virtual reality applications for addressing the needs of those aging with disability. Studies in Health Technology and Informatics, 2011, 163, 510-6.	0.3	22
122	Neural substrates of motor memory consolidation depend on practice structure. Nature Neuroscience, 2010, 13, 923-925.	14.8	156
123	Measurement Structure of the Wolf Motor Function Test: Implications for Motor Control Theory. Neurorehabilitation and Neural Repair, 2010, 24, 791-801.	2.9	54
124	Neural Correlates of the Contextual Interference Effect in Motor Learning: A Transcranial Magnetic Stimulation Investigation. Journal of Motor Behavior, 2010, 42, 223-232.	0.9	21
125	The Mirror Neuron System: A Neural Substrate for Methods in Stroke Rehabilitation. Neurorehabilitation and Neural Repair, 2010, 24, 404-412.	2.9	188
126	The EXCITE Stroke Trial. Stroke, 2010, 41, 2309-2315.	2.0	192

#	Article	IF	CITATIONS
127	Effects of Different Doses of Low Frequency rTMS on Motor Corticospinal Excitability. Journal of Neurology & Neurophysiology, 2010, 01, .	0.1	9
128	Hemisphere Specific Impairments in Reach-to-Grasp Control After Stroke: Effects of Object Size. Neurorehabilitation and Neural Repair, 2009, 23, 679-691.	2.9	29
129	Design for the Everest Randomized Trial of Cortical Stimulation and Rehabilitation for Arm Function Following Stroke. Neurorehabilitation and Neural Repair, 2009, 23, 32-44.	2.9	72
130	An Intensive, Progressive Exercise Program Reduces Disability and Improves Functional Performance in Patients After Single-Level Lumbar Microdiskectomy. Physical Therapy, 2009, 89, 1145-1157.	2.4	43
131	Age Affects the Attentional Demands of Stair Ambulation: Evidence From a Dual-Task Approach. Physical Therapy, 2009, 89, 1080-1088.	2.4	48
132	A Functional Threshold for Long-Term Use of Hand and Arm Function Can Be Determined: Predictions From a Computational Model and Supporting Data From the Extremity Constraint-Induced Therapy Evaluation (EXCITE) Trial. Physical Therapy, 2009, 89, 1327-1336.	2.4	99
133	The Best We Can Be Is Yet to Come. Physical Therapy, 2009, 89, 1236-1249.	2.4	4
134	Neural Correlate of the Contextual Interference Effect in Motor Learning: A Kinematic Analysis. Journal of Motor Behavior, 2009, 41, 232-242.	0.9	25
135	A Systematic Review of Voluntary Arm Recovery in Hemiparetic Stroke. Journal of Neurologic Physical Therapy, 2009, 33, 2-13.	1.4	78
136	Manual asymmetries in grasp pre-shaping and transport–grasp coordination. Experimental Brain Research, 2008, 188, 305-315.	1.5	71
137	Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. Lancet Neurology, The, 2008, 7, 33-40.	10.2	306
138	Use of a virtual environment to investigate planning of unconstrained reach actions after stroke: A feasibility study. , 2008, , .		0
139	Determining the Optimal Challenge Point for Motor Skill Learning in Adults With Moderately Severe Parkinson's Disease. Neurorehabilitation and Neural Repair, 2008, 22, 385-395.	2.9	81
140	Contextual Interference Effect: Elaborative Processing or Forgetting—Reconstruction? A Post Hoc Analysis of Transcranial Magnetic Stimulation—Induced Effects on Motor Learning. Journal of Motor Behavior, 2008, 40, 578-586.	0.9	48
141	The EXCITE Trial: Predicting a Clinically Meaningful Motor Activity Log Outcome. Neurorehabilitation and Neural Repair, 2008, 22, 486-493.	2.9	79
142	The Physical Therapy Clinical Research Network (PTClinResNet). American Journal of Physical Medicine and Rehabilitation, 2008, 87, 937-950.	1.4	7
143	Looking in the Rear View Mirror When Conversing With Back Seat Drivers: The EXCITE Trial Revisited. Neurorehabilitation and Neural Repair, 2007, 21, 379-387.	2.9	29
144	Effects of Task-Specific Locomotor and Strength Training in Adults Who Were Ambulatory After Stroke: Results of the STEPS Randomized Clinical Trial. Physical Therapy, 2007, 87, 1580-1602.	2.4	202

#	Article	IF	CITATIONS
145	Does the Cholinesterase Inhibitor, Donepezil, Benefit Both Declarative and Non-Declarative Processes in Mild to Moderate Alzheimers Disease?. Current Alzheimer Research, 2007, 4, 273-276.	1.4	16
146	Six hours in the laboratory: a quantification of practice time during constraint-induced therapy (CIT). Clinical Rehabilitation, 2007, 21, 950-958.	2.2	33
147	Evolution of fMRI Activation in the Perilesional Primary Motor Cortex and Cerebellum With Rehabilitation Training-Related Motor Gains After Stroke: A Pilot Study. Neurorehabilitation and Neural Repair, 2007, 21, 412-428.	2.9	75
148	Learning Implicitly: Effects of Task and Severity After Stroke. Neurorehabilitation and Neural Repair, 2007, 21, 444-454.	2.9	63
149	Effect of Task Practice Order on Motor Skill Learning in Adults With Parkinson Disease: A Pilot Study. Physical Therapy, 2007, 87, 1120-1131.	2.4	38
150	Reliability of intracortical and corticomotor excitability estimates obtained from the upper extremities in chronic stroke. Neuroscience Research, 2007, 58, 19-31.	1.9	31
151	VR Aided Motor Training for Post-Stroke Rehabilitation: System Design, Clinical Test, Methodology for Evaluation. , 2007, , .		4
152	Intervention to enhance skilled arm and hand movements after stroke: A feasibility study using a new virtual reality system. Journal of NeuroEngineering and Rehabilitation, 2007, 4, 21.	4.6	57
153	Socially assistive robotics for post-stroke rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2007, 4, 5.	4.6	176
154	Pediatric endurance and limb strengthening for children with cerebral palsy (PEDALS) – a randomized controlled trial protocol for a stationary cycling intervention. BMC Pediatrics, 2007, 7, 14.	1.7	17
155	Evaluation Approach for Post-stroke Rehabilitation Via Virtual Reality Aided Motor Training. Lecture Notes in Computer Science, 2007, , 378-387.	1.3	2
156	The Excite Trial: relationship of intensity of constraint induced movement therapy to improvement in the wolf motor function test. Restorative Neurology and Neuroscience, 2007, 25, 549-62.	0.7	43
157	Validity of Accelerometry for Monitoring Real-World Arm Activity in Patients With Subacute Stroke: Evidence From the Extremity Constraint-Induced Therapy Evaluation Trial. Archives of Physical Medicine and Rehabilitation, 2006, 87, 1340-1345.	0.9	205
158	Explicit Information Interferes with Implicit Motor Learning of Both Continuous and Discrete Movement Tasks After Stroke. Journal of Neurologic Physical Therapy, 2006, 30, 46-57.	1.4	131
159	Motor Cortex Activation During Treatment May Predict Therapeutic Gains in Paretic Hand Function After Stroke. Stroke, 2006, 37, 1552-1555.	2.0	155
160	Effect of Constraint-Induced Movement Therapy on Upper Extremity Function 3 to 9 Months After Stroke. JAMA - Journal of the American Medical Association, 2006, 296, 2095.	7.4	1,608
161	The EXCITE Trial: Attributes of the Wolf Motor Function Test in Patients with Subacute Stroke. Neurorehabilitation and Neural Repair, 2005, 19, 194-205.	2.9	215
162	Providing Explicit Information Disrupts Implicit Motor Learning After Basal Ganglia Stroke. Learning and Memory, 2004, 11, 388-396.	1.3	123

#	Article	IF	CITATIONS
163	Bimanual Training After Stroke: Are Two Hands Better Than One?. Topics in Stroke Rehabilitation, 2004, 11, 20-30.	1.9	95
164	Cerebellar Stroke Impairs Temporal but not Spatial Accuracy during Implicit Motor Learning. Neurorehabilitation and Neural Repair, 2004, 18, 134-143.	2.9	77
165	Why is the functional independence measure used to identify some rehabilitation needs in stroke survivors when there are better tools?. Physiotherapy Research International, 2004, 9, 182-184.	1.5	3
166	A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: a pilot study of immediate and long-term outcomes. Archives of Physical Medicine and Rehabilitation, 2004, 85, 620-628.	0.9	291
167	Bimanual Training After Stroke: Are Two Hands Better Than One?. Topics in Stroke Rehabilitation, 2004, 11, 20-30.	1.9	12
168	Hemispheric specialization in the co-ordination of arm and trunk movements during pointing in patients with unilateral brain damage. Experimental Brain Research, 2003, 148, 488-497.	1.5	35
169	Methods for a Multisite Randomized Trial to Investigate the Effect of Constraint-Induced Movement Therapy in Improving Upper Extremity Function among Adults Recovering from a Cerebrovascular Stroke. Neurorehabilitation and Neural Repair, 2003, 17, 137-152.	2.9	226
170	Impact of Explicit Information on Implicit Motor-Sequence Learning Following Middle Cerebral Artery Stroke. Physical Therapy, 2003, 83, 976-989.	2.4	118
171	Impact of explicit information on implicit motor-sequence learning following middle cerebral artery stroke. Physical Therapy, 2003, 83, 976-89.	2.4	50
172	Implicit motor-sequence learning in humans following unilateral stroke: the impact of practice and explicit knowledge. Neuroscience Letters, 2001, 298, 65-69.	2.1	112
173	Function of the â€~direct' and â€~indirect' pathways of the basal ganglia motor loop: evidence from reciprocal aiming movements in Parkinson's disease. Cognitive Brain Research, 2001, 10, 329-332.	3.0	12
174	Influence of central set on anticipatory and triggered grip-force adjustments. Experimental Brain Research, 2000, 130, 298-308.	1.5	25
175	Practice effects on the less-affected upper extremity after stroke. Archives of Physical Medicine and Rehabilitation, 1999, 80, 668-675.	0.9	48
176	Age-Related Effects on Temporal Strategies to Speed Motor Performance. Journal of Aging and Physical Activity, 1998, 6, 45-61.	1.0	19
177	Sensory—motor control in the ipsilesional upper extremity after stroke. NeuroRehabilitation, 1997, 9, 57-69.	1.3	24
178	Motor Task Difficulty and Brain Activity: Investigation of Goal-Directed Reciprocal Aiming Using Positron Emission Tomography. Journal of Neurophysiology, 1997, 77, 1581-1594.	1.8	212
179	Corrigendum to "Sensory—motor control in the ipsilesional upper extremity after stroke― [NeuroRehabilitation 9 (1997) 57–69]â~†. NeuroRehabilitation, 1997, 9, 245-249.	1.3	8
180	Learning a Partial-Weight-Bearing Skill: Effectiveness of Two Forms of Feedback. Physical Therapy, 1996, 76, 985-993.	2.4	113

CAROLEE JOYCE WINSTEIN

#	Article	IF	CITATIONS
181	Research Committee. Neurology Report, 1995, 19, 4.	0.2	0
182	Effects of Physical Guidance and Knowledge of Results on Motor Learning: Support for the Guidance Hypothesis. Research Quarterly for Exercise and Sport, 1994, 65, 316-323.	1.4	209
183	Knowledge of Results and Motor Learning—Implications for Physical Therapy. Physical Therapy, 1991, 71, 140-149.	2.4	293
184	Movement Science and Its Relevance to Physical Therapy. Physical Therapy, 1990, 70, 759-762.	2.4	27
185	Reduced frequency of knowledge of results enhances motor skill learning Journal of Experimental Psychology: Learning Memory and Cognition, 1990, 16, 677-691.	0.9	441
186	Qualitative Dynamics of Disordered Human Locomotion. Journal of Motor Behavior, 1989, 21, 373-391.	0.9	73
187	Neurogenic Dysphagia. Physical Therapy, 1983, 63, 1992-1997.	2.4	96
188	Acupuncture and Its Application to Physical Therapy. Physical Therapy, 1974, 54, 1283-1289.	2.4	0
189	Conditions of task practice for individuals with neurologic impairments. , 0, , 89-102.		22
190	Intensive physical therapeutic approaches to stroke recovery. , 0, , 219-232.		5
191	Task-Oriented Training to Promote Upper Extremity Recovery. , 0, , .		3
192	Different Patterns of Neural Activity Characterize Motor Skill Performance During Acquisition and Retention. Frontiers in Human Neuroscience, 0, 16, .	2.0	6